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Abstract
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1 Introduction

Public liquidity provision is warranted when the private sector is unable to produce

enough liquid assets to diversify aggregate liquidity risk (Holmstrom and Tirole, 1998).

Alternatively, public liquidity provision is justified when liquidity shortages arise, for

example in fire sales (Allen and Gale, 1994, 2004, Lorenzoni, 2008, Schleifer and Vishny,

2011, He and Kondor, 2016, and others). But, is there a role for the public provision (or

withdrawal) of liquidity when liquid assets are abundant and the prospects of fire sales un-

likely? This question is particularly important in the aftermath of the global financial crisis,

where unconventional monetary policies such as quantitative easing (QE)—implemented

by central banks well after the onset of the crisis, at a point when liquidity shortages had

moderated—are thought to have implications for market liquidity (Krishnamurthy and

Vissing-Jorgensen, 2011).

To articulate our argument we develop a dynamic model of market-based financial

intermediation which features a two-way interaction between primary credit markets

and secondary OTC markets. On the one hand, long-term bonds issued by firms in the

primary market are retraded in an OTC market, thus secondary market liquidity affects

investors’ supply of credit to firms.1 On the other hand, the demand for credit, i.e., the

issuance of illiquid bonds, affects secondary market liquidity through the composition of

investors’ portfolios as they must allocate limited financial resources between liquid and

illiquid assets. It is this trade-off between credit provision and liquidity provision in OTC

markets that is the novel feature of our analysis.

The key financial friction of the model is the presence of search frictions in the secondary

OTC market. The importance of search frictions for OTC markets is grounded in both

the empirical evidence, which suggests that they are the main driver of illiquidity in OTC

markets for bonds (Edwards et al., 2007, and Bao et al., 2011), and the large theoretical

literature modeling OTC markets with search frictions (Duffie et al., 2005, Lagos and

Rocheteau, 2009, He and Milbradt, 2014, Atkenson et al., 2015, and others). In addition,

we model the interaction of firms and investors in the primary credit market following

the costly state verification (CSV) framework (Townsend, 1979, Gale and Hellwig, 1985,

Bernanke and Gertler, 1989), such that debt emerges as the optimal contract for firms’

1We focus on credit provision through capital markets, which has become increasingly important for
non-financial firms and households in the U.S. The fraction of credit that is provided by the market has
increased in the last 25 years and stands at over 60 percent for non-financial firms and at about 50 percent
for households. This evidence is obtained from the Financial Accounts of the United States and consid-
ers the fraction of commercial paper, municipal securities and loans, and corporate bonds in total credit
market instruments for non-financial firms as well as the fraction of mortgages and consumer credit that is
securitized for households.
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funding.2 In our framework, the trade and agency frictions interact to determine the

credit supply and market liquidity in equilibrium.

Our model has three periods and two types of agents: firms and investors. In the

first period, firms need financing for productive projects that pay off in the last period.

Funding is obtained from investors who only value future consumption but are subject

to preference shocks: a fraction becomes impatient and would like to consume in the

interim period, while the rest remain patient and are willing to buy the assets of impatient

investors. However, asset exchange between patient and impatient investors takes place

in an OTC market characterized by search frictions, so counterparties are only found with

some probability. These probabilities are determined endogenously as a function of the

ratio of liquid assets relative to illiquid assets available for trade. Thus, our concept of

market liquidity is one of market thickness. The liquidity of the OTC market introduces

a liquidity premium in firms’ external financing and, thus, affects the supply of credit

through a liquidity premium channel that operates through the cost of credit.

However, our model features an additional interaction between credit and OTC mar-

kets. The quantity of bonds issued reduces the liquid resources in the financial sector,

which can be used to provide liquidity in secondary markets. This is reflected in the

portfolios of investors who allocate limited financial resources between illiquid bonds

and liquid assets. Other things equal, market liquidity is lower as the composition of

investors’ portfolios shift toward illiquid bonds. Thus, bond issuance affects secondary

market liquidity through a liquidity provision channel.

The liquidity premium channel and the liquidity provision channel generate an inter-

play between primary credit markets and secondary OTC markets, as illustrated in Figure

1. These channels work in opposite directions and distort private decisions. Firms issue

more debt exactly when the liquidity premium is low, which is the case when market

liquidity is high. But, as investors hold more of this debt, they shift their portfolios away

from liquid assets, thereby reducing secondary market liquidity. In our existence proof

we establish that the two effects jointly determine the unique equilibrium in the primary

and secondary markets. The liquidity premium channel dominates, while the liquidity

provision channel acts as an automatic stabilizer such that an improvement or a deterio-

ration in market liquidity cannot perpetually increase or decrease bond issuance. Hence,

our mechanism is different from models which feature an amplification between funding

and market liquidity stemming from binding collateral constraints and limits to arbitrage

2The specific nature of the agency friction in the CSV framework is not crucial for our results. What is
key is that there is a downward sloping demand for credit in the primary market. This is expected to be a
good description of markets that support credit intermediation.
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Primary
Credit Market

Secondary
OTC Market

Liquidity premium channel

Liquidity provision channel

Figure 1: Feedback loop between primary and secondary market for corporate debt

(e.g., Brunnermeier and Pedersen, 2009, Gromb and Vayanos, 2002).

Moreover, the interaction between these two channels is a source of inefficiency. Search

frictions and the dependence of market thickness on the abundance of liquid resources

relative to the supply of bonds gives rise to a pecuniary externality for firms and a

congestion externality for investors. The pecuniary externality works through the liquidity

premium and reflects the fact that firms fail to internalize how their bond issuance affects

their external financing costs. The congestion externality operates through the trading

probabilities, as investors’ fail to internalize how their portfolio choices affect the ease

with which they can trade in the secondary market. Market liquidity is (generically)

either suboptimally low or high. When liquidity is lower than the social optimum, firms

are over-leveraged and write excessively risky debt contracts. This over-abundance of

long-term bonds leads to an under-provision of liquidity in the secondary market. The

opposite is true when liquidity is suboptimally high.

We examine the ability of a social planner to regulate the private provision of liquidity

to implement the constrained efficient equilibrium. When private liquidity is inefficiently

low, optimal regulation calls for a tax on leverage to restrict illiquid bond issuance by firms

coupled with a subsidy on storage to provide an incentive for investors to hold a more

liquid portfolio. Because of the congestion externality, a change in liquidity can generate

ex ante welfare gains to investors.3 These welfare gains allow the planner to reduce firms’

funding costs and increase their profits despite having to operate on a smaller scale. In

contrast, when private liquidity is inefficiently high a leverage subsidy combined with

a storage tax are able to align the private and social incentives. Regardless of whether

3When private liquidity is inefficiently low (high), ex ante identical investors making the portfolio
allocation decision are better offwith higher (lower) liquidity because the gains (losses) to impatient investors
outweigh the losses (gains) to patient investors.
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private liquidity is inefficently high or low, optimal liquidity regulation allows the firm to

internalize the pecuniary externality in a way that does not make investors worse off.

The interaction of the congestion and pecuniary externalities is critical for the efficacy

of liquidity regulation. Indeed, the planner effectively exploits the congestion externality

to create an additional surplus for investors that is then redistributed back to firms through

more favorable funding costs. When the congestion externality is not present the planner

has no means of achieving welfare-enhancing interventions. In this case, private liquidity

coincides with its constrained-efficient level.

In addition to regulation, we also examine how the optimal management—provision

or withdrawal—of public liquidity can alleviate trading frictions and improve economic

efficiency. We focus on quantitative easing (QE) policies implemented by a central bank

that uses liquid reserves to purchase less liquid assets from investors, yet quantitative

tightening (QT) is expected to operate through the same mechanism. Through the lens

of our model, any public policy that alters both public and private portfolios effectively

shifts liquidity risk between the private and the public sector. This transfer of liquidity risk

alters the liquidity premia which, in turn, influences savings and investment decisions in

the real economy (see Stein, 2014, for a general discussion).

Our framework highlights the fact that public liquidity management is inherently

different from liquidity regulation. Both policies affect the level of market liquidity, but

whereas regulation trades off liquidity and credit provision, public liquidity management

implies that public liquidity and credit provision move in tandem. This is because liquidity

management enhances the intermediation technology of the economy. The difference in

the two policies opens the door for them to coexist. Indeed, our analysis shows that

either QE or QT should be supplemented with optimal regulation to generate even larger

welfare gains. In this sense, liquidity regulation and liquidity management should be

views as complements, not substitutes, in the policy toolkit.

Our analysis informs two related policy debates. On the one hand, despite their per-

ceived efficacy the channels through which quantitative policies operate is still a matter

of debate.4 The two leading conceptual explanations are the signaling and the portfo-

lio balance channels. The former considers that QE programs signal to investors that

short-term rates will be lower in the future, which depresses long-term rates through the

expectations channel. The latter considers that there is a downward slopping demand for

the assets purchased by central banks, so these purchases contract the effective supply

4Gagnon et al. (2011) and Krishnamurthy and Vissing-Jorgensen (2011) present evidence of the efficacy
of the program implemented by the Federal Reserve in reducing Treasury yields and mortgage rates.
Similarly, Joyce et al. (2011) and Christensen and Rudebusch (2012) present evidence of the efficacy of the
QE program implemented by the Bank of England.
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of these assets, increasing their price and lowering their returns. This idea that can be

traced back to Tobin (1969) can be rationalized if the market for reserves is segmented

and the assets purchased by central banks are not perfectly substitutable (Christensen and

Krogstrup, 2016). In contrast, our paper argues that the reason that the financial sector

has a downward slopping demand for bonds (or an upward sloping supply of credit) is

that changes in investors’ portfolio composition affect the ease with which bonds can be

retraded in secondary OTC markets.

On the other hand, the implementation of QE in the aftermath of the Great Recession

has opened a debate about the optimal “exit strategy,” i.e., what is the optimal strategy

to unwind these quantitative policies. The Federal Open Market Committee (FOMC) has

stated that it “is maintaining its existing policy of reinvesting principal payments from

its holdings of agency debt and agency mortgage-backed securities [...] and of rolling

over maturing Treasury securities [...], and it anticipates doing so until normalization

of the level of the federal funds rate is well under way.5” Bernanke (2017) informally

makes a case for such as strategy: given the uncertainty about the possible effects of a

quantitative tightening (QT) program it seems prudent to increase the short-term policy

rate in order to make room for monetary accommodation if needed. Our analysis provides

an additional rationale for this strategy. Through the lens of our model, waiting to unwind

the balance sheet until after interest rates have risen is adequate because optimal liquidity

management calls for implementing QT to withdraw liquidity from OTC markets in this

case.

This paper is closely related to Holmström and Tirole (1998) in the sense that the

role of regulation and provision of public liquidity is a central part of our analysis. Our

paper is also related to other studies of the public role for liquidity provision (see for

example, Allen and Gale, 1994, 2004, Lorenzoni, 2008, Schleifer and Vishny (2011), Hart

and Zingales, 2015, He and Kondor, 2016). These studies suggest that private liquidity

provision is suboptimally low, with the exception of Hart and Zingales (2015) who finds

that it is suboptimally high. We contribute to this literature by showing that, under

the same financial frictions, private liquidity provision can be either suboptimally high or

suboptimally low, depending on the conditions in the OTC market. This is an important

result because these conditions are likely to vary over time, making the optimal liquidity

management policy time varying.

Our paper is also related to the literature studying frictional OTC trade in financial

5See FOMC statement March 15, 2017. https://www.federalreserve.gov/newsevents/pressreleases/
monetary20170315a.htm. The FOMC has laid out its plan for the exit strategy in the “Policy Normalization
Principles and Plans” dated September 17, 2014. https://www.federalreserve.gov/newsevents/pressreleases/
monetary20140917c.htm.
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markets (Duffie et al., 2005, Lagos and Rocheteau, 2009, Geromichalos and Herrenbrueck,

2012, He and Milbradt, 2014, Atkenson et al., 2015). This literature has primarily focused

on how search frictions matter for bid-ask spreads for assets traded in frictional markets.

Some studies in this literature consider the role of endogenous market liquidity consider-

ing the cost of secondary market participation (Shi, 2015, Bruche and Segura, 2014, and Cui

and Radde, 2015). Other studies consider the effect of monetary policy on trade frictions

by changing agents’ money holdings that are used in decentralized exchanges (Lagos and

Wright, 2005, Lagos and Zhang, 2016, among others). Our focus is different. We consider

the trade-off between credit and liquidity provision in primary credit markets as the main

determinant of market liquidity. Thus, we contribute to this literature by opening new

avenues for research considering the interplay between liquidity provision and market

liquidity in OTC markets.

Finally, our paper contributes to a recent literature that have studied the mechanism

through which QE operates and its implications for the real economy. Gertler and Karadi

(2011) study unconventional monetary policy in a new Keynesian model where financial

intermediaries are credit constrained. The central bank, instead, is not credit constrained

and thus can support credit extension when the intermediation capacity of private institu-

tions is curtailed during episodes of stress. Farhi and Caballero (2013) show that QE can

be effective when there is an excess demand for safe assets, as it substitutes risky with safe

assets in private portfolios. However, exchanging long-term Treasury bonds with shorter

maturity ones will not be effective in their model. Moreira and Savov (forthcoming) show

a similar result in a model where the perceptions about the riskiness of assets used as

collateral by private agents drives liquidity creation. Williamson (2012), within a new

Monetarist model, argues that QE will affect the real economy only if it transfers credit

risk from the private to the public sector. In contrast, our paper argues that QE affects

the real economy by influencing the thickness of OTC markets, even when safe assets are

abundant, there is no financial distress, or credit risk transfers between the private and

public sector are not allowed.

The rest of the paper proceeds as follows. Section 2 presents our dynamic model of

market-based financial intermediation and establishes the existence and uniqueness of

the equilibrium. Section 3 describes the effect of secondary OTC trade on bond premia

and primary credit markets. Section 4 presents the social planner’s problem, describes the

externalities operating through secondary market liquidity, and analytically describes the

set of policy instruments that can implement the constrained efficient outcome. Section

5 analyses the effect of quantitative easing on secondary market liquidity and economic

efficiency. Finally, section 6 concludes. All proofs are relegated to an Online Appendix.
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2 A Dynamic Model of Market-Based Intermediation

2.1 Physical Environment

There are three time periods t = 0, 1, 2, a single consumption good, and two types of agents:

entrepreneurs and investors. Entrepreneurs have long-term investment projects and may

fund these projects with internal funds or with external funds received from investors. Ex

ante identical investors provide funds to entrepreneurs, but once that lending has taken

place and while production is underway, investors are subject to a preference (liquidity)

shock which reveals whether they are impatient, and hence prefer to consume earlier

rather than later, or patient. Investors can trade their assets in an OTC market with search

frictions to meet their liquidity needs (see Figure 2).

t = 0 t = 1 t = 2

Investor

Firm

Impatient
Investor

Patient
Investor

Investor

Firm

Firm undertakes a long-term
risky investment project

1 − δ

δ

Some investors are hit
with a liquidity shock

Uncertainty, ω, is realized;
risky project pays out

Liquid
asset

Illiquid
asset

Primary credit market

Secondary OTC market

Figure 2: Timeline.

There is a mass one of ex ante identical entrepreneurs, who are endowed with n0

units of consumption at t = 0. Entrepreneurs invest to maximize the return on their

investment.6 They operate a linear technology, which delivers Rkω at t = 2, per unit of

6This is equivalent to maximize profits per unit of endowment, or the return on equity, as the endowment
is fixed and is solely used for investment.

8



consumption invested at t = 0. The random variable ω is an idiosyncratic productivity

shock that hits after the project starts, and is distributed according to the cumulative

distribution function F, with unit mean. The productivity shock is privately observed

by the entrepreneur, but investors can learn about it if they pay a monitoring cost μ as

a fraction of assets. The (expected) gross return Rk is assumed to be known at t = 0, as

there is no aggregate uncertainty in the model. In order to produce, the firm must finance

investment, denoted k0, either through its own resources or by issuing financial contracts

to investors. So, profits equal total revenue in period 2, Rkωk0, minus payment obligations

from financial contracts. Entrepreneurs represent the corporate sector in our model, so

we will talk about entrepreneurs’ projects and firms interchangeably.

There is a mass one of ex ante identical investors, who are endowed with e0 units

of consumption at t = 0. Investors have unknown preferences at t = 0, and learn their

preferences at t = 1. At t = 1 investors realize if they are patient or impatient consumers, a

fraction 1 − δ will turn out to be patient and a fraction δ impatient. Following Diamond

and Dybvig (1983) the preference shocks are private information and are not contractible

ex-ante.7 Patient consumers have preferences only for consumption in t = 2, uP(c1, c2) = c2,

whereas impatient consumers have preferences for both consumption in t = 1 and 2, but

discount period 2 consumption at rate β ≤ 1, uI(c1, c2) = c1 + βc2.

Investors in both period 0 and 1 have access to a storage technology with yield r > 0,

i.e., every unit of consumption stored yields 1 + r units of consumption in the next period.

The amount stored in period t is denoted st. In addition, at t = 0, investors can purchase

financial contracts issued by entrepreneurs; and, at t = 1, they can exchange consumption

for financial contracts in an OTC market subject to search frictions (see Figure 2). Patient

investors that are able to acquire contracts in the OTC market realize an endogenous return

Δ. But, as we show below this return equals an expression of exogenous parameters (see

equation (8)).

Finally, note that the expected return on financial contracts will be known in period 0

and 1, since there is no aggregate uncertainty or new information arriving after investors

and firms have agreed on the terms of these contracts. This means that asymmetric

information considerations will not play a role in the OTC market.8

Both the market for financial contracts, the primary market, and the OTC or secondary

7Financial intermediaries would be useful to improve allocations. Nevertheless, when retrading of
financial claims is allowed in these models agents can self-insure against idiosyncratic liquidity risk (Jacklin
1987). But our secondary market is not Walrasian precluding the perfect self insurance. Moreover, we
abstract from intermediaries to focus on the role of the OTC market.

8A long literature studies the effect of adverse selection in secondary trade as a source of illiquidity
(Gorton and Pennacchi, 1990; Eisfeldt, 2004; Kurlat, 2013; Malherbe, 2014; Bigio, 2015). We have abstracted
from informationally driven illiquidity to focus on the role of search frictions.
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market for these contracts are described in detail below.9

In what follows we make the following assumptions.

Assumption 1 (Relative Returns) The long-term return of the productive technology is larger

than the cumulative two-period storage return and the return on storage plus the return on

secondary markets, i.e., (1 + r)2 < Rk and (1 + r)Δ ≤ Rk. In addition, monitoring costs are such

that Rk(1 − μ) < (1 + r)2.

Assumption 2 (Productivity Distribution) Let h(ω) = dF(ω)/(1 − F(ω)) denote the hazard

rate of the productivity distribution. It is assumed that ωh(ω) is strictly increasing.

Assumption 3 (Impatience) Impatient investors discount future consumption at a higher rate

than the return on storage, 1/β − 1 ≥ r or β ≤ 1/(1 + r), and the discounted expected return on

firms’ projects is larger than the return on storage 1 + r ≤ βRk.

Assumption 4 (Investors Deep Pockets) It is assumed that investors’ (total) endowment e0 is

significantly higher than entrepreneurs’ (total) endowment n0, i.e., e0 >> n0.

Assumption 1 is necessary for the issuance of financial contracts in equilibrium. On

the one hand, Rk > (1+ r)2, allows firms to offer a return that is higher than the cumulative

two-period return on storage. On the other hand, Rk ≥ (1 + r)Δ, allows firms to offer

a return that is higher even when the prospective return on the OTC market is taken

into account. Furthermore, this assumption rules out equilibria where entrepreneurs are

always monitored, (1+r)2 > Rk(1−μ). Assumption 2 ensures that there is no credit rationing

in equilibrium. Assumption 3 makes impatient investors have a (weak) preference for

current versus future consumption when the interest rate is r, β ≤ 1/(1 + r), but not too

impatient so that the return of entrepreneurs for an impatient investor is larger than

the return on storage, 1 + r ≤ βRk. Assumption 4 ensures that investors can meet the

credit demand of entrepreneurs. Together these assumptions ensure the existence and

uniqueness of equilibrium, as we discuss below.

2.2 The Financial Contract and the Demand for Credit

Entrepreneurs finance their investment k0 using either internal resources, n0, or by selling

long-term financial contracts to investors. These contracts specify an amount, bd
0, borrowed

from investors at t = 0 and a promised gross interest rate, Z, made upon completion of the

project at t = 2. If entrepreneurs cannot make the promised interest payments, investors

can take all firm’s proceeds, paying a monitoring cost equal to a fraction μ of the value of

9Note that since r > 0 and since investors preferences have been assumed time separable and risk
neutral, there was no loss of generality in abstracting away from consumption at t = 0 for investors, and
consumption at t = 1 for patient investors.
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assets.10 Then, the t = 0 budget constraint for the entrepreneur is given by k0 ≤ n0 + bd
0.

For what follows it will be useful to define the entrepreneur’s leverage, l0, as the ratio

of assets to (internal) equity k0/n0.

An entrepreneur is protected by limited liability, so her profits are always non-negative.

Thus, the entrepreneur’s expected profit in period t = 2 is given byE0 max
{
0,Rkωk0 − Zbd

0

}
.

Limited liability implies that the entrepreneur will default on the contract if the realization

of ω is sufficiently low such that the payoff of the long-term project is smaller than the

promised payout: Rkωk0 < Zbd
0. This condition defines a threshold productivity level, ω̄,

such that the entrepreneur defaults when

ω < ω̄ =
Z
Rk

l0 − 1
l0

. (1)

The productivity threshold measures the credit risk of the financial contract, as it increases

the firm’s probability of default.11

For notational convenience, we define G(ω̄) ≡
∫ ω̄

0
ωdF(ω) and Γ(ω̄) ≡ ω̄(1−F(ω̄))+G(ω̄).

The function G(ω̄) equals the truncated expectation of entrepreneurs’ productivity given

default. The function Γ(ω̄) equals the expected value of a random variable equal to ω

if there is default (ω < ω̄) and equal to ω̄ when there is not (ω ≥ ω̄). It follows that

Rkk0Γ(ω̄) corresponds to the expected transfers from entrepreneurs to investors. Then, the

firms’ objective, to maximize expected profits per unit of endowment, can be expressed

as 1/n0E0 max{0,Rkωk0 − Zbd
0} = [1 − Γ(ω̄)] Rkl0.

Similarly, the expected gross return of holding a single bond to maturity Rb can be

expressed as

Rb =
1
b0

[∫ ∞

ω̄

Zbd
0dF(ω) + (1 − μ)

∫ ω̄

0
Rkωk0dF(ω)

]

=
l0

l0 − 1
Rk [Γ(ω̄) − μG(ω̄)

]
, (2)

which is a function of only leverage and the productivity threshold. Clearly Rb is decreas-

ing in l0 as leverage dilutes lenders claim on the firm’s assets. Moreover, in equilibrium

it will be increasing in risk, ω̄, as detailed below. Using this notation we can write down

the firm’s problem that defines the optimal contract, when the expected hold-to-maturity

10We consider deterministic monitoring rather than stochastic monitoring, which results in debt being
the optimal contract. Krasa and Villamil (2000) derive the conditions under which deterministic monitoring
occurs in equilibrium in costly enforcement models.

11Note that the productivity threshold is increasing in the spread between the promised return and the
expected return on the entrepreneur investment, and it is increasing in the entrepreneur’s leverage l0.
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return offered to investors equals R as

max
l0,ω̄

[1 − Γ(ω̄)] Rkl0 s.t. Rb(l0, ω̄) = R . (3)

Note that this problem also defines the demand for credit in the primary market

bd
0(R) = (l0(R) − 1)n0, which is, as we show below, a strictly decreasing function of the

expected hold-to-maturity return R. As it is well established in the CSV literature the

optimal financial contract will take the form of a debt contract. Therefore, we refer to

these contracts as bonds.

2.3 The OTC Market

The ex post heterogeneity introduced by the preference shock generates potential gains

from trading financial contracts for consumption in the OTC market. Impatient investors

want to exchange long-term bonds for consumption, as they would rather consume in

period 1 than hold the bond to maturity until period 2 (Assumption 3). Patient investors

are willing to take the other side of the trade if the return from buying bonds in the OTC

market Δ is greater than the return on the storage technology 1 + r.

To model the exchange in the OTC market we consider that each investor represents

a large family of small traders. That is, each investor is comprised by a continuum

of infinitesimal traders of mass e0, where each trader has a portfolio restricted to one

bond or q1 units of consumption, which corresponds to the price of bonds in terms of

consumption.12 Traders are paired up according to a matching technology. Impatient

investors send a mass of bs
0 traders to sell their bonds. Patient investors send a mass of

(1 + r)s0/q1 traders to buy bonds in the OTC market. This is akin to a situation where

impatient investors submit bs
0 sell orders and patient investors submit (1 + r)s0/q1 buy

orders, so for ease of exposition we will refer to this trading process as submitting orders.

A key implication of the assumptions that trading is carried out by traders as opposed

to investors and that traders meet only once with potential counterparties, is that the price

in the OTC marker q1 is independent of market thickness.13 If we were to allow an effect on

the secondary market price of market thickness there would be an additional mechanism

12That is, traders’ portfolios are restricted as in Atkenson et al. (2015) or Bianchi and Bigio (2014). In
our case, traders’ portfolios are restricted to a single bond equivalent: one bond for sellers and q1 units of
consumption for buyers.

13See Bianchi and Biggio (2014) for a model where multiple rounds of trade reintroduces the dependence
on market conditions of the price in the secondary market. See Mattesini and Nosal (2016) for a model
where renegotiation between investors and brokers introduces a dependence of market conditions on the
price in the secondary market.
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to rationalize the regulation and public provision of liquidity.

Suppose, in aggregate, there are A sell (or ask) orders and B buy orders. The matching

function is assumed to be constant returns to scale, as long as the number of matches does

not exceed the number of orders in each side of the market. And it is given by

m (A,B) = min
{
A,B, νAαB1−α

}
, (4)

with 0 < ν a scaling constant and 0 < α < 1 the elasticity of the matching function with

respect to sell orders.

We define a concept of market liquidity through the ratio of buy orders to sell orders, or

θ = B/A. This notion of liquidity—defined by a concept of thickness in the OTC market—

has different implications for traders on opposing sides of the market. For example, when

θ is large, a bond in the secondary market is relatively liquid, that is, it is relatively easy

for sellers to trade. But, at the same time, it is relatively hard for buyers to trade. Note

that our notion of liquidity is related to, but distinct from, the easiness to trade for all

market participants, which is captured in our framework by the efficiency of the matching

technology ν. Increasing (decreasing) ν makes it easier (harder) for participants on both

sides of the market to trade in a symmetric fashion.

Using the matching function, the probability that a sell order is executed is expressed as

f (A,B) =
m(A,B)

A
or f (θ) = m(1, θ) , (5)

and the probability that a buy order is executed is expressed as

p(A,B) =
m(A,B)

B
or p(θ) = m(θ−1, 1) . (6)

The fact that matches are bounded by the minimum number of orders, defines two

liquidity threshold θ = min{ν1/α, 1} and θ = max{ν−1/(1−α), 1}. When market liquidity

θ ≤ θ then all buy orders are executed, i.e., m(A,B) = B. In this case buyers trade with

probability p(θ) = 1, whereas sellers trade with probability f (θ) = θ. Alternatively, when

θ ≥ θ then all sell orders are executed, i.e., m(A,B) = A; and thus the trade probabilities

f (θ) = 1 and p(θ) = θ−1. When liquidity is in [θ, θ] then matches are given by the constant

return to scale matching function νAαB1−α; and thus the trade probabilities f (θ) = νθ1−α

and p(θ) = νθ−α.

Once a buy order and a sell order are matched, the terms of trade are determined via

a simple surplus sharing rule, determined by Nash bargaining and known by all agents.

From the seller’s perspective, a trading match yields additional consumption from the
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sale of the bond at price q1. If the seller walks away from the match she will hold the bond

to maturity and receive an expected payoff βR in t = 2. Then, the surplus that accrues to

an impatient investor is given by SI(q1) = q1 − βR. Similarly, the value of a trading match

to a buyer is the present value of the (expected) return on the bond, net of the price that

needs to be paid for each bond in the secondary market, SP(q1) = R/(1 + r) − q1.

The price of the debt contract on the secondary market is determined by Nash bargain-

ing, which maximizes the product of the respective surpluses, maxq1

(
SI(q1)

)ψ (
SP(q1)

)1−ψ
,

where ψ ∈ [0, 1] is the bargaining power of impatient investors.

The solution of the surplus splitting problem yields the following bond price in the

secondary market

q1 = R

(
ψ

1 + r
+ (1 − ψ)β

)

. (7)

Note that ψ = 1 drives the price of the bond to the “ask” price, or the price that extracts

full rent from the buyer, q1 = R/(1 + r). By the same token, ψ = 0 drives the price of the

bond to the “bid” price, or the price that extracts full rent from the seller, q1 = βR. From

equation (7) it follows that the return that patient investors make in the secondary market,

per executed buy order, depends only on exogenous parameters and is given by

Δ =
R
q1

=

(
ψ

1 + r
+ (1 − ψ)β

)−1

≥ 1 + r . (8)

2.4 Investors and the Supply of Credit

As described above, investors are ex ante identical and are endowed with e0 units of the

consumption good. At t = 0 they can allocate their wealth across two assets: a storage

technology s0 and financial contracts bs
0. Thus, their budget constraint is given by

s0 + bs
0 = e0 , (9)

where s0, bs
0 ≥ 0, i.e., borrowing at the storage rate or short-selling bonds are not allowed.

The storage technology pays a fixed rate of return 1+r at t = 1 in units of consumption.

The proceeds of this investment, if not consumed, can be reinvested to earn an additional

return of 1 + r between period 1 and 2, again paid in units of consumption. In this sense,

storage is a liquid asset, as at any point in time it can be costlessly transformed into

consumption. In contrast, bonds deliver an expected payoff R in t = 2 and are illiquid as

an investor might be unable to turn her bond into consumption at t = 1 if her sell order

does not find a match in the OTC market.
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To describe the portfolio choice problem of investors, it is useful to first consider the

optimal behavior of impatient and patient investors in t = 1 when they arrive in that

period with a generic portfolio of storage and bonds (s0, bs
0).

2.4.1 Impatient Investors

By Assumption 3 at t = 1 impatient investors want to consume in the current period.

They can consume the proceeds from the resources they put into storage, s0(1 + r), plus

the additional proceeds from placing bs
0 sell orders in the OTC market. These orders are

executed with probability f (θ) and each executed order yields q1 units of consumption.

Thus, the consumption of impatient investors in period 1 is given by

cI
1 = s0(1 + r) + f (θ)q1bs

0 . (10)

On the other hand, with probability 1 − f (θ) orders are not matched and impatient

investors have to carry bonds into period 2. Therefore, consumption in the final period is

given by

cI
2 = (1 − f (θ))Rbs

0 , (11)

with the utility derived from cI
2 discounted by β.

2.4.2 Patient Investors

Patient investors only value consumption in the final period and will be willing to place

buy orders in the OTC market if there is a surplus to be made, i.e., if q1 ≤ R/(1 + r). The

price determination in the OTC market guarantees that this is always the case (1 + r ≤ Δ),

thus patient investor would ideally like to exchange all of their consumption for bonds.

But the buy orders of patient investors will be executed only with probability p(θ). That

is, they place s0(1 + r)/q1 buy orders, of which a fraction p(θ) are executed on average. So

patient investors expect to increase their bond holding by p(θ)s0(1 + r)/q1 units. It follows

that expected storage holdings at the end of t = 1, sP
1 , are equal to a fraction 1 − p(θ) of the

available liquid funds s0(1 + r), i.e., sP
1 = (1 − p(θ))s0(1 + r). Then, consumption in the final

period equals

cP
2 = (1 − p(θ))s0(1 + r)2 +

[

bs
0 + p(θ)

s0(1 + r)
q1

]

R . (12)

That is, the payout from consumption that was stored and not traded away in the OTC

market plus the expected payout from bond holdings.
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2.4.3 Optimal Portfolio Allocation

In the initial period investors solve a portfolio allocation problem, taking the liquidity in

the OTC market θ as given. They choose between storage and bonds to maximize their

expected lifetime utilityU = δ(cI
1+βcI

2)+(1−δ)cP
2 , subject to the period 0 budget constraint

(9), and anticipating that optimal expected consumption of impatient and patient investors

is given by equations (10)-(12).

Using the expressions for optimal expected consumption, we can rewrite the expected

lifetime utility as U = Uss0 + Ubbs
0, where Us and Ub denote the expected utility from

investing in storage and bonds in period 0, respectively, and are given by14

Us(θ) = δ(1 + r) + (1 − δ)
[
(1 − p(θ))(1 + r)2 + p(θ)(1 + r)Δ

]
, (13)

and Ub(R, θ) = ub(θ)R , (14)

where ub(θ) ≡ δ
[

f (θ)Δ−1 + (1 − f (θ))β
]
+ (1 − δ) corresponds to the expected loss a bond

investor expects to make relative to the hold-to-maturity bond return, with ub(θ) ≥ β. That

is, the expected utility of holding bonds in period 0 can be decomposed as the product of

the expected hold-to-maturity return on the bond R and the expected loss due to the bond

illiquidity ub(θ).15 By contrast, the utility of holding storage in period 0 only depends on

market liquidity, through the probability that the return from providing liquidity can be

realized p(θ).

Using these definitions, we can express the asset demand correspondence that maxi-

mizes the investors portfolio problem as





bs
0 = e0, s0 = 0 if Ub > Us

bs
0 ∈ [0, e0], s0 = e0 − bs

0 if Ub = Us

bs
0 = 0, s0 = e0 if Ub < Us

That is, if the expected utility of holding bonds in period 0 is greater than the utility of

holding storage in period 0—which incorporates the return that can be made by providing

liquidity—then investors will demand only bonds in the initial period. On the contrary,

if the expected utility of holding bonds is smaller than then expected benefit of holding

storage in period 0, then investors will only hold storage in the initial period. Finally, if

14We are taking advantage of the result that Δ is a function of exogenous model parameters, but in
general Δ(R, q1) = R/q1.

15In equilibrium, this will introduce a dependence of the utility of holding a bond on the contract
characteristics (l0, ω̄), through the expected return on holding the bond to maturity Rb.
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the expected benefits are equal, investors will be indifferent between investing in storage

and bonds initially, and their demands will be an element of the set of feasible portfolio

allocations: s0, bs
0 ∈ [0, e0], such that the total value of assets equal the initial endowment

(9). In this case the individual credit supply is totally elastic when the expected hold-to-

maturity return equals Us(θ)/ub(θ).

Given our assumptions, in equilibrium, the portfolio allocation will be interior (i.e.,

Us = Ub with s0, bs
0 > 0), thus we focus our analysis on this case.16 For future reference we

label this condition the investors’ break-even condition.

Us(θ) = Ub(R, θ) = ub(θ)R . (15)

The upshot of writing the investors’ break-even condition in this way is that from the

perspective of a firm that takes the liquidity in the OTC markets as given the break-even

condition amounts to ensuring investors a hold-to-maturity return equal to Us(θ)/ub(θ).

Moreover, this condition describes the aggregate credit supply, bs
0(R). In fact, it is implicitly

defined by Us(θ(bs
0,R)) = ub(θ(bs

0,R))R, where θ(bs
0,R) = (1 − δ)(e0 − bs

0)(1 + r)Δ/(δbs
0R).

To be clear, our concept of aggregate credit supply is not just the sum of the individual

investors’ credit supply, but is one where the consistency of market thickness is taken into

account, i.e., θ is a function of (bs
0,R). As we show below, the aggregate credit supply is

strictly increasing in the expected hold-to-maturity bond return.

2.5 Equilibrium

The equilibrium of the model is defined as follows.

Definition 1 (Private Equilibrium) We say that (l0, ω̄, θ, q1) is a private equilibrium if and

only if:

1. Given the outcome in the secondary market (θ, q1), the financial contract is described by

(l0, ω̄) that maximizes entrepreneurs’ return on investment subject to investors’ break-even

condition (15).

2. The credit market clears, i.e., bd
0(R) = bs

0(R) ≡ b0, with R = Rb(l0, ω̄) given by equation (2).

3. Market liquidity corresponds to θ = (1 − δ)(1 + r)s0/(q1δbs
0).

4. q1 is determined via the surplus sharing rule (7).

16Note that the expected utility from investing in storage, Us, is not smaller than the expected utility in
financial autarky: Ua = δ(1 + r) + (1 − δ)(1 + r)2, since the return of buying a bond in the secondary market
Δ ≥ 1 + r.
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5. All agents have rational expectations about q1 and θ.

The equilibrium of the model is described by the entrepreneur’s choice of leverage, l0,

and risk, ω̄, to maximize the payoff of the risky investment project. Entrepreneurs’ profits

are higher when l0 is higher and when the promised payout is lower, that is, when ω̄ is

lower. But firms are constrained in their choices of l0 and ω̄ as they need to offer terms that

make financial contracts attractive to investors: the investors’ break-even condition. Firms

are aware that when selling in the OTC market, investors obtain a price that depends on

the contract characteristics and is determined via the sharing rule (equation 7). It follows

that the firm’s problem can be written as maxl0,ω̄ [1 − Γ(ω̄)]Rkl0, subject to the investors’

break-even condition (15).

The entrepreneur’s privately optimal choice of leverage trades off the marginal in-

crease in profits from higher leverage against the marginal reduction in expected (hold-

to-maturity) bond return for investors. Similarly, the privately optimal choice for the risk

profile of the contract trades off the marginal increase in profits from lower risk against

the marginal reduction in the expected (hold-to-maturity) bond return for investors.

These considerations can be summarized in the following optimality condition

1 − Γ(ω̄)
Γ′(ω̄)l0

= −
∂Rb(l0, ω̄)/∂l0

∂Rb(l0, ω̄)/∂ω̄
. (16)

This equation, which describes the privately optimal debt contract, taken together

with the investors’ break-even condition (15), and the expressions that characterize the

secondary market (θ, q1) provide a complete description of the equilibrium of the model.

Finally, note that the expected hold-to-maturity return Rb, the price in the secondary

market q1, and secondary market liquidity θ all can be expressed as a function of the

characteristics of the optimal financial contract (l0, ω̄). In fact, the price is a function of the

expected return on holding the bond to maturity, Rb, which depends on (l0, ω̄); so we can

write market liquidity as

θ =
(1 − δ)s0(1 + r)

δb0q1
=

(1 − δ)(1 + r)Δ (e0 − n0(l0 − 1))

δn0(l0 − 1)Rb(l0, ω̄)
. (17)

The following theorem establishes the existence and uniqueness of equilibrium in our

model.

Theorem 1 (Existence and Uniqueness of Private Equilibrium) Under the maintained

assumptions there exists a unique private equilibrium of the model. Furthermore, in the unique

equilibrium credit is not rationed.
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The proof uses a fixed-point argument on a mapping that takes the expected bond

return offered by firms and uses the equilibrium conditions to map it to the expected

hold-to-maturity return required by investors. Thus, a fixed point of this mapping is

an equilibrium of the model. The proof proceeds in three steps. The first step shows

that the optimal financial contract defines a credit demand function, i.e., each offered

return yields a unique demand for credit or level of bond issuance by firms. This step

derives results that are similar to results found in the CSV literature. The second step

shows that the aforementioned mapping is continuous and maps the interval of expected

returns [(1 + r)2,Rk] on itself, thus having a fixed point and establishing the existence

of equilibrium. These derivations generalize previous results to the case when financial

contracts are retraded in OTC markets, and they show that the aggregate credit demand

is strictly decreasing in bonds’ expected returns. Finally, the third step establishes that

multiple equilibria do not arise due to the retrading in the OTC market. We establish

uniqueness by showing that when the matching function exhibits constant returns to

scale, the aforementioned mapping is strictly decreasing. That is, when the expected return

offered by firms declines, the borrowing by firms increases, which lowers market liquidity

and increases the expected hold-to-maturity return required by investors. The last result

suggests that aggregate credit supply is upward slopping. In fact, the derivations in the

proof of Theorem 1 allows to establish the following results that characterize the demand

and supply for credit.

Corollary 1 (The Optimal Financial Contract and The Demand for Credit) The character-

istics of the optimal financial contract: leverage l0 and risk ω̄, are strictly decreasing in the expected

hold-to-maturity return R. That is, the demand for credit bd
0(R) is strictly decreasing.

Corollary 1 follows from the characterization of the demand for credit in the proof of

Theorem 1. In addition, we can establish that the aggregate supply of credit is strictly

increasing in the expected hold-to-maturity return, in the relevant part of the parameter

space.

Proposition 1 (Aggregate Credit Supply Elasticity) The aggregate credit supply, bs(R), has

a finite and strictly positive interest rate elasticity.

Proposition 1 characterizes the role of secondary market liquidity on the aggregate

supply of credit in the primary market for bonds. As the expected hold-to-maturity bond

return increases, for investors to be indifferent between illiquid bonds and liquid storage,

market thickness need to drop so the return on storage increases and the expected loss

from holding illiquid bonds decreases. Market thickness drops only if investors’ portfolios
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Figure 3: Aggregate Demand and Supply of Credit in the Primary Market.
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become more illiquid, which is the case when investors’ bond holdings increase. That

is to say that the supply of credit increases. Note that in our model, where individual

investors—who are risk neutral—supply credit totally elastically, the interaction of trade

frictions and investors’ limited liquid resources generate an increasing aggregate supply

of credit.

The previous results are useful to analyze the model as the aggregate demand and

supply for credit, i.e., the demand of credit by firms from investors and investors’ supply

of credit to firms in the primary bond market, depicted in Figure 3. This representation

can be used to contrast our model with previous work. In the CSV literature it is typically

assumed that aggregate credit supply is perfectly elastic at rate (1 + r)2, e.g., Bernanke

et al. 1999. This case is depicted by the green dashed line in Figure 3. In other models

of OTC trade with search frictions, such as Duffie, Garleanu and Pederson (2005), where

the trading probabilities and market thickness are functions of exogenous parameters, the

aggregate credit supply will be totally elastic at some rate R > (1 + r)2 and R < Rk.

3 OTC Trade, Bond Premia, and Credit Markets

This section defines the liquidity and default bond-premia and presents analytical char-

acterizations for both. It then presents a frictionless benchmark that specifies the limiting

cases where trade frictions in the OTC market become irrelevant. It continues to describe

the relationship between the OTC market, i.e, the secondary market for bonds, and the

credit market, i.e., the primary market for bonds. It concludes by presenting a numerical

illustration of the model.
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3.1 Analytical Characterization of Liquidity and Default Premia

It is useful to define a benchmark interest rate that is the return on a two-period bond that

could be traded in a perfectly liquid secondary market. Naturally, such a contract needs

to deliver the same return in expectation as a strategy of investing only in storage both in

the initial and interim periods.17 This gives rise to the following definition.

Definition 2 (Liquid Two-period Rate) The liquid two-period rate is defined as the gross

interest rate on a perfectly liquid two-period bond R` ≡ (1 + r)2.

The benchmark rate allows us to decompose the total gross return on the financial

contract written by the firm into a default and a liquidity premium. In order to do

this, express the total bond premium as the gross return of the firm’s contract relative to

the benchmark rate, Z/R`. Then, this total premium is decomposed into a component

owing to default risk, Z/Rb, and a component owing to liquidity risk, Rb/R`. With this

decomposition, we have the following definitions for the default and liquidity premia,

respectively.

Definition 3 (Default and Liquidity Premia) The bond default premium Φd and the bond

liquidity premium Φ` are given by Φd ≡ Z/Rb and Φ` ≡ Rb/R`.

Consequently, the total bond premium is given by Φt ≡ Z/R` = Φd Φ`. These defini-

tions provide sharp characterizations of both the default and liquidity premia, which are

convenient to help trace out the underlying economic mechanisms in our model.

From the definition of the default premium we have that

Φd(ω̄) =
ω̄

Γ(ω̄) − μG(ω̄)
. (18)

It follows that in our model, as in the classic CSV model, the default premium is an

increasing function of credit risk ω̄, as formalized in the next proposition.

Proposition 2 (Credit Risk and the Default Premium) Under the maintained assumptions,

the default premium Φd(ω̄) is a strictly increasing function of credit risk ω̄.

Intuitively, investors demand a higher default premium for financial contracts that are

more likely to default (i.e., contracts that are more risky, or specify a higher productivity

threshold ω̄ for paying out the full promised value). The more subtle part of the argument

17No arbitrage under perfectly liquid markets implies that trading a two-period bond should yield the
same expected return for investors to rolling over one period safe investments, i.e. δ ∙R`/(1+ r)+ (1−δ) ∙R` =
δ ∙ (1 + r) + (1 − δ) ∙ (1 + r)2.

21



is that leverage does not affect the default premium, as is the case in the benchmark CSV

model, though leverage and risk are jointly determined in equilibrium. This is due to the

fact that, for a fixed threshold level, ω̄, leverage affects both the face value of the contract,

Z, and the hold-to-maturity return for investors, Rb, in the same way (equation (18)).

Moreover, from the definition of the liquidity premium and the investors’ break-even

condition (15), we have that

Φ`(θ) =
Us(θ)

(1 + r)2ub(θ)
. (19)

That is, the liquidity premium equals the spread between the bond hold-to-maturity

return, which equals the ratio between the expected utility from liquidity provision Us

and the expected utility loss due to bond illiquidity ub, and the liquid two-period return

(1 + r)2. Equation (19) provides an analytical characterization of the relationship between

the liquidity premium and secondary market thickness θ, showing that the former is only

a function of the latter. This analytical representation of the liquidity premium channel is

key for our analysis. The following Lemma characterizes this channel.

Lemma 1 (Secondary Market Liquidity and the Liquidity Premium) The liquidity pre-

mium, Φ`, or equivalently, the hold-to-maturity return, Rb, is a decreasing function of secondary

market liquidity, θ. Moreover, the elasticity of the liquidity premium, Φ`, with respect to secondary

market liquidity, θ, is lower than 1 in absolute value.

Lemma 1 formalizes the intuition that the price of liquidity risk (i.e., the liquidity

premium) is inversely proportional to the amount of liquidity in secondary OTC markets.

When secondary market liquidity, θ, is lower, investors require a higher liquidity pre-

mium, Φ`, or equivalently, a higher hold-to-maturity return, Rb. This relationship forms

the basis for the liquidity premium channel shown by the arrow going from the secondary

OTC market to the primary credit market in Figure 1. In our model, market liquidity

determines the likelihood that investors’ orders will be executed in an OTC trade. In par-

ticular, as the market becomes less liquid sell orders will be more difficult to execute ( f (θ)

decreases), and impatient investors will realize larger utility losses from the illiquidity

of bonds (ub(θ) decreases). By the same token, as liquidity declines buy orders are more

likely to be executed (p(θ) increases), rising the expected private benefit from liquidity

provision (Us(θ) increases). Both of these channels lead to an increase in the expected

hold-to-maturity bond return to keep investors indifferent between bonds and storage in

period 0, that is, the liquidity premium increases.
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3.2 A Frictionless Benchmark

The next proposition establishes the conditions under which trade in the OTC market is

irrelevant, so that secondary market liquidity has no bearing on the equilibrium of the

model.

Proposition 3 (Irrelevance of OTC Trade) Under the following conditions, there is no liquidity

premium, i.e., Φ` = 1, implying that the model collapses to the benchmark CSV model:

1. All investors are patient, so that δ = 0; or

2. Impatient investors discount at rate β = 1/(1 + r); or

3. Impatient investors are able to sell all their bonds in the secondary market at their reservation

value, which is true when ψ = 1 and e0 ≥ ˉ̄e0.

The case in which δ = 0 is straightforward. When all investors are patient, there is no

need to trade in secondary markets; investors only care about the hold-to-maturity return.

Liquidity is not priced in financial contracts and the model collapses to the standard CSV

setup presented in, for example, Townsend (1979) and Bernanke and Gertler (1989).

The same result obtains for the second case, though for different reasons. When

impatient investors discount future consumption at exactly the rate of return that comes

from holding a unit of storage, so that β = 1/(1 + r), they will be indifferent between

consuming in the final or interim period. This indifference implies that there are no gains

from OTC trade. In this case, the liquidity preference shock is immaterial and investors

only consider the hold-to-maturity return when buying financial contracts in primary

markets.

The third case considers the situation in which impatient investors can fully satisfy

their liquidity needs in secondary markets, while there are no gains for patient investors

from liquidity provision. That is, the terms of trade are set such that impatient investors

extract the entire surplus, i.e., ψ = 1, and all their sell orders will be executed. Patient

investors, then, earn only their opportunity cost from liquidity provision, i.e., Δ = (1+ r)2.

In this case, as before, liquidity considerations will not factor in the lending decision of

investors in primary markets. The condition that f (θ) = 1 follows from e0 ≥ ˉ̄e0. We derive

this threshold for investors endowment in the proof of Proposition 3 in the Appendix.

Intuitively, f (θ) = 1, requires that there is enough storage at t = 1 that all sell orders can

be satisfied, which requires that investors’ endowment is sufficiently large.

It is worth mentioning that in principle there could be a fourth case where trade frictions

are irrelevant: when patient investors can fully realize the gains from liquidity provision,
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i.e., ψ = 0 and p(θ) = 1, while at the same time impatient investors are indifferent from

holding bonds to maturity and trading in the OTC market, i.e., β = 1/(1 + r). The first

condition fixes the liquidity premium at β−1/(1 + r) ≥ 1. Thus, there will be no effect from

market liquidity into the credit market. But trade frictions are irrelevant only when the

liquidity premium collapses to 1, which is the case only when β = 1/(1 + r). The latter

condition is encompassed in case 2 in Proposition 3.18

3.3 Liquidity Premium and Liquidity Provision Channels

We now characterize the effects of frictional OTC secondary trade on primary credit

markets. For the remainder of the paper, we consider only the cases in which trading

frictions in the secondary market result in a non-negligible liquidity premium. That is,

assume that (i) the probability of being an early consumer is positive, δ > 0; (ii) impatient

investors discount future consumption strictly more than what is implied by the storage

rate, i.e., β < 1/(1+r); and (iii) impatient investors cannot fully satisfy their liquidity needs

in secondary markets, i.e., ψ < 1 or e0 < ˉ̄e0.

We are now ready to characterize the relationship between credit and OTC markets

depicted in Figure 1. On the one hand, market thickness in the OTC market θ determines

the liquidity premium that investors will require on illiquid bonds over liquid storage,

Φ`(θ) (equation (19)). This is the liquidity premium channel that describes how market

liquidity affects liquidity premia. Our model shows that the liquidity premium shapes

the expected hold-to-maturity return Rb that firms need to offer investors and, thus, firms’

demand for credit bd
0. Therefore, market liquidity θ affects the equilibrium in the credit

market (b0,Rb).

On the other hand, the equilibrium in the credit market (b0,Rb) will determine the

secondary market liquidity, θ; this is the liquidity provision channel of credit markets into

OTC markets. This channel is novel to the literature analyzing financial markets with

trade frictions. In fact, to support the equilibrium level of bond issuance investors will

have to hold those bonds in their portfolios and will reduce their holding of liquid storage,

which is deployed in the OTC market to support market liquidity. In fact, equation (17)

characterizes how OTC market thickness θ is a function of the volume and expected return

of bonds in the credit market (b0,Rb).

The liquidity premium effect and the liquidity provision effect work in opposite di-

rections. Suppose there is an exogenous shock to market liquidity, then the liquidity

18Moreover, as we show in the proof of Proposition 1, Assumption 4 will rule out that liquidity can be
arbitrarily low as to guarantee that patient investors can fully realize the gains from liquidity provision, i.e.,
p(θ) = 1.
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premium channel would increase the aggregate supply of credit. Firms respond to this

shift in credit supply by issuing more bonds at lower expected (hold-to-maturity) re-

turns. But the liquidity provision channel would yield a reduction in market liquidity

as investors substitute liquid assets for bonds in their portfolio. This channel attenuates

the initial increase in market liquidity. In our existence proof we establish that the two

effects jointly determine the unique equilibrium in the primary and secondary markets.

The direct effect dominates, while the indirect effect acts as an automatic stabilizer such

that an improvement or a deterioration in market liquidity cannot perpetually increase or

decrease bond issuance.

3.4 Comparative Statics

Now we describe the effect of the parameters that determine the demand and supply

for credit for the equilibrium of the model. We begin by describing the effect of these

parameters on the demand and supply for credit.

Proposition 4 (Aggregate Credit Supply Determinants) Taking the expected hold-to-

maturity return and bond issuance as given, investors require a higher liquidity premium, Φ`, and

hence the market thickness θ is lower in the OTC market, when

1. (Preference shock) The probability of becoming impatient is higher, i.e., δ is higher; or

2. (Impatience) Impatient investors discount the future more heavily, i.e., β is lower; or

3. (Endowments) Investors have less to invest in storage, i.e., e0 is lower.

The proposition details how the parameters that describe investors’ preferences (δ and

β) and endowments (e0) affect the supply of credit in the primary bond market, when

firms’ bond issuance is taken as given. As investors’ preferences are more sensitive

to liquidity risk (δ is higher or β is lower), the associated liquidity premium drives up

the hold-to-maturity return that investors require to hold corporate debt, i.e., there is a

contraction of the aggregate credit supply. On the other hand, when investors are poorer

(e0 is smaller) they reduce their holdings of liquid storage one-for-one conditional on

buying the same number of financial contracts. Less liquid investors’ portfolios reduce

liquidity in secondary markets, and thus also drives up the required hold-to-maturity

return through an increase in the liquidity premium (Lemma 1).

Proposition 5 (Credit Demand Determinants) Taking the expected hold-to-maturity return

offered to investors as given, credit demand is increasing in the firm’s endowment n0.
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Proposition 5 is a consequence of the fact that the optimal financial contract, which

solves the firm’s problem (3), specifies the optimal firm leverage l0 as a function of the

expected hold-to-maturity return R. In fact, as this return remains constant, so does

leverage and thus firm’s credit demand is given by bd(R) = (l0(R)−1)n0, which an increasing

function of n0. This argument completes the proof.

The implications of the previous two results for the equilibrium of the model are

summarized in the following proposition.

Proposition 6 (Equilibrium Comparative Statics) In any of the following cases, the equilib-

rium expected return in credit markets increases. Thus, the leverage l0 and risk ω̄ of the optimal

contract and the default premium all decrease. Moreover, in the first three cases bond issuance

decreases.

1. (Preference shock) The probability of becoming impatient is higher, i.e., δ is higher; or

2. (Impatience) Impatient investors discount the future more heavily, i.e., β is lower; or

3. (Investors’ Endowments) Investors have less to invest in storage, i.e., e0 is lower; or

4. (Firms’ Endowments) Firms have more equity (i.e., n0 is higher).

This proposition presents the comparative statics in equilibrium for the parameters that

describe preferences and endowments for investors and firms. For the first three cases,

Proposition 4 establishes that an increase in δ or a decrease in β or e0 will reduce the

aggregate supply of credit and firms will see an increase in the liquidity premium of the

bonds they issue. According to Proposition 6, firms adjust to this increase in expected

bond return along two margins (recall that the debt contract is two-dimensional): they

offer fewer and less risky contacts in the primary market. A reduction in the number

of bonds issued in the primary market lowers the number of possible sell orders in the

secondary market, boosting market thickness and attenuating the increase in the liquidity

premium. In addition, the reduction of bonds’ riskiness contributes to reduce firms’

external financing cost by lowering the default premium. In equilibrium, thus, the total

effect on the external financing premium is ambiguous and depends on whether the

increase in the liquidity premium or the decrease in the default premium dominates.

The fourth case of Proposition 6 deserves special attention. In the benchmark CSV

model, altering the firm’s endowment of equity has no impact on expected return offered

to investors, or the characteristics of the optimal contract. The reason is because in the

frictionless benchmark there are no liquidity provision or liquidity premium channels at

work. This result does not carry through in our framework, where these channels are
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present. As in the benchmark model—indeed, for exactly the same reason—there is no

effect of an increase of firms’ endowment on the optimal contract. But in our framework

as credit demand and bond issuance increase, the liquidity provision channel reduces

liquidity in the OTC market. This leads investors to reprice bonds’ illiquidity: the liquidity

premium channel. Thus, in our framework, the size of the corporate sector relative to the

financial sector influences liquidity provision and liquidity premia. Moreover, our model

is homogeneous of degree zero in (n0, e0). That is, increasing the size of the corporate sector

n0 and the financial sector e0 in the same proportions have no effect on market thickness,

the liquidity premium, or the characteristics of the optimal contract. The equilibrium in

the credit market will be described by the same expected hold-to-maturity return and an

increase in bond issuance commensurate to the increase in size of the two sectors.

3.5 A Numerical Illustration

We present a simple numerical illustration using the following parameter values. We set

the endowment of firms at n0 = 0.2 and the endowment of investors at e0 = 1. Investors’

preferences are described by a discount factor for impatient investors β = 0.85, while δwill

take different values in [0, 1] to illustrate the results established above. Firms’ technology

expected return is given by Rk = 1.2, whereas the return on storage is assumed to be

r = 0.01. The parameters of the matching function in the OTC market are the scaling

constant ν = 0.2 and the elasticity of the matching function with respect to sell orders is

α = 0.5. The share of the surplus that accrues to impatient investors is ψ = 1. Idiosyncratic

productivity shocks ω are distributed according to a log-normal distribution with mean

equal 1 and variance equal to 0.25. Finally, monitoring costs are a share μ = 0.2 of firms’

revenue.

We begin with the frictionless benchmark, taking δ = 0.19 The equilibrium of the model

is described by entrepreneurs’ choice of leverage, l0, and risk, ω̄, subject to the constraint

imposed by the investors’ break-even condition (15) and the consistency requirements for

liquidity, θ, and price, q1, in the OTC market. The characteristics of the optimal contract

(l0, ω̄) determine the hold-to-maturity return, Rb, and thus the secondary market price

q1. (Recall that the return on executed orders in secondary markets is pinned down by

ψ, r, and β.) The optimal contract will determine the portfolio allocation of investors

and thus secondary market liquidity θ (equation 17). Thus, we use the (l0, ω̄)-space to

describe the optimal contract and the equilibrium of the model. Figure 4 depicts the firm’s

19From Proposition 3 the frictionless benchmark is obtained if alternatively we set β = 1/1.01, or if ψ = 1
(as in our example) and e0 is sufficiently high so f (θ) = 1.
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isoprofit curves in green,20 and displays the investors’ break-even condition by a red line.

Firm’s profits increase with leverage and decrease with risk, so isoprofit curves represent

higher profits moving south-east in the figure. The private equilibrium in the frictionless

benchmark economy is given by the tangency between the break-even condition and the

isoprofit line shown by the solid black dot in Figure 4.

Figure 5 illustrates the case of an increase in the liquidity shock, δ, (i.e., case 1 of

Propositions 4 and 6). As the probability of becoming impatient increases, investors

require a higher liquidity premium to be compensated for liquidity risk (Proposition 4).

In contrast, the firm’s isoprofit lines for a given contract specified by (l0, ω̄) are invariant to

δ, thus the demand for credit is invariant to δ. Nevertheless, the firm adjusts the terms of

the contract it offers in the primary market owing to the increase in the liquidity premium.

In particular, the firm reduces its supply of primary debt, which partially compensates

investors for the reduction in secondary market liquidity. The resulting equilibrium has

a lower level of leverage and a less risky debt contract, as shown in Figure 5 (Proposition

6).

Finally, Figure 6 presents a decomposition of the total corporate premium Φt paid on

the primary debt contract in terms of the default premium Φd and the liquidity premium

Φ`. The figure shows that lower levels of leverage and risk due to increased liquidity

demand result in lower total corporate bond premia. Naturally, the liquidity premium

goes up, but the default premium decreases since the firm is offering a lower ω̄ (Proposition

6), and the latter effect dominates in this case.

4 Efficient Liquidity in OTC Markets

We consider a social planner that is constrained by the presence of search frictions and

the structure of trade in the OTC market. Hence, our concept of efficiency is one of

constrained efficiency, or second best.21

The planner chooses the optimal contract to maximize the profits of the firm while

internalizing both the liquidity provision and liquidity premium channels. To formalize

the planner’s problem let (l0, ω̄, θ, q1) be allocations that describe the socially efficient

outcome and let (lpe
0 , ω̄

pe, θpe, qpe
1 ) be the allocations in the private equilibrium described in

section 3. Then, the planner’s problem can be written as maxω̄,l0,θ,q1 [1 − Γ(ω̄)] Rkl0, subject

20Note that the shape of the isoprofit curves (increasing and concave) holds in general, as follows from
the properties of the Γ(ω̄) function, and does not depend on the particular values used in our example.

21In the interest of space the analysis in sections 4 and 5 restricts attention to the more interesting case
where θ ∈ (θ, θ), so trading probabilities depend on the matching function (4) and are not pinned down by
the minimum number of buy or sell orders.
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to equations (7), (17), and

U(l0, ω̄, θ, q1) ≥ U(lpe
0 , ω̄

pe, θpe, qpe
1 ) . (20)

Condition (20) says that the planner cannot choose equilibrium allocations that result

in lower welfare for investors compared to the private equilibrium, whereas equations (7)

and (17) force the planner to respect the determination of prices and liquidity, respectively,

in the OTC market.22 The social planning problem differs from the private equilibrium

in two respects. First, the planner need not respect the investor’s break-even condition

(15), but cannot make investors worse off, i.e., needs to satisfy (20). Second, the planner

internalizes how period 0 choices affect liquidity in the secondary market by explicitly

considering (17) as a constraint, which, in contrast, is a condition of the private equilib-

rium.23 In this manner, the planner internalizes both the liquidity provision and liquidity

premium channels.

We substitute equations (7) and (17) in the planner’s problem, and letλbe the multiplier

on constraint (20), to obtain that the socially optimal choice of leverage is given by

[1 − Γ(ω̄)]Rk = −λ

[

n0(Ub −Us) + b0ub
∂Rb

∂l0
+
∂U
∂θ

∂θ
∂l0

]

. (21)

That is, the marginal increase in the firm’s profits from additional leverage needs to be

proportional to the marginal reduction in total expected utility for investors. The latter has

three components: (i) the portfolio composition: as leverage increases investors need to

re-allocate n0 units from storage to bonds; (ii) the effect on the expected hold-to-maturity

return Rb; and (iii) the effect through secondary market liquidity: as liquidity increases it

becomes easier for impatient investors to sell their bonds, but it becomes more difficult

for patient investors to buy bonds and earn the return Δ in the secondary market.

Similarly, the socially optimal choice for the risk profile of corporate debt is given by

l0Γ
′(ω̄)Rk = λ

[

b0ub
∂Rb

∂ω̄
+
∂U
∂θ

∂θ
∂ω̄

]

. (22)

That is, the marginal increase in the firm’s profits from reducing risk need to be

proportional to the marginal reduction in total expected utility for investors, which has

22We also considered a more general problem, as an alternative but not reported, where the planner can
additionally determine the terms of trade in the secondary market and assigns Pareto weights on the two
agents to maximize a social welfare function.

23Recall that investors, and thus firms, explicitly considered (7) in the private equilibrium as well, thus
its explicit consideration does not modify the planner’s problem relative to the private equilibrium, unless
the planner can affect the terms of secondary trade.
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two components: the effect on the hold-to-maturity return Rb and the effect through

secondary market liquidity.

Taking a ratio of equations (21) and (22) gives

1 − Γ(ω̄)
Γ′(ω̄)l0

= −
n0(Ub −Us) + b0ub

∂Rb

∂l0
+ ∂U

∂θ
∂θ
∂l0

b0ub
∂Rb

∂ω̄ + ∂U
∂θ

∂θ
∂ω̄

. (23)

This equation, together with the constraint on investors total expected utility (20), de-

scribes the socially optimal debt contract.24 We are ready to establish the generic ineffi-

ciency of the private provision of liquidity.25

Proposition 7 (Generic Constrained Inefficiency of Liquidity Provision) Consider a plan-

ner that designs an optimal financial contract, as described by (20), (23), (7) and (17). Given

the parameters (α,ψ, r) belonging to a generic set P, the planner will set a level of secondary

market liquidity that is different from the private equilibrium. That is, the private equilibrium is

generically constrained inefficient.

Given Proposition 7, we can identify two distorted margins that drive a set of wedges

between the private and socially efficient outcomes that are apparent from comparing the

equilibrium conditions (15) and (16) to the social planner’s counterparts (20) and (23). On

the one hand, comparing equation (23) to equation (16), reveals the presence of a pecuniary

externality that comes from the fact firms do not internalize how their bond issuance affects

their funding cost. In fact, firms’ funding cost are set by investors, who will be affected

by bond issuance in two ways. First, additional bonds in their portfolios will change their

expected utility if there is a difference between the utility they expect to receive when

buying bonds or liquid assets, represented by the term n0(Ub − Us). Second, additional

bonds will affect market liquidity, which in turn is going to affect investors’ expected

utility, represented by the term ∂U/∂θ.

The second distortion becomes apparent when comparing equation (15), the investors’

break-even condition, to equation (20), the weak Pareto improvement constraint faced

by the planner. Since Us = Ua + (1 − δ)(1 + r)(Δ − (1 + r))p (θ), we can rewrite equation

(20) as n0(l0 − 1) (Ub −Us) = e0(1 − δ)(1 + r) (Δ − (1 + r))
[
p (θpe) − p (θ)

]
. Written this way,

the equation tells us that as long as the optimal level of public liquidity is different than

the equilibrium level of private liquidity, i.e, θpe , θ, then the expected utility of holding

24The constraint will always be binding since the planner cares only about the firm, but this need not be
the case if the planner maximizes aggregate social welfare. In that case the planner may want to split the
aggregate gains according to some set of Pareto weights.

25See also Geanakoplos and Polemarchakis (1986) for a general characterization of constrained ineffi-
ciency.
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bonds and liquid assets will have to be different Ub(θ) , Us(θ). This reflects the presence

of a congestion externality that comes from the fact that investors do not internalize how

their portfolio choices affect market liquidity.

The following proposition summarizes the interaction between these two externalities.

Proposition 8 (Constrained Efficient Equilibrium) The constrained efficient allocations can

be characterized conditional on the model parameters (α, r, ψ) as follows:

• If ψ(1 + αr) > α(1 + r) then secondary market liquidity generates a positive externality on

investors (∂U/∂θ > 0); the planner implements a higher level of secondary market liquidity

(θ > θpe); and the socially optimal financial contract is characterized by lower leverage,

l0 < lpe
0 , and less risk, ω̄ < ω̄pe.

• If ψ(1 + αr) < α(1 + r) then secondary market liquidity generates a negative externality on

investors (∂U/∂θ < 0); the planner implements a lower level of secondary market liquidity

(θ < θpe); and the socially optimal financial contract is characterized by higher leverage,

l0 > lpe
0 , and more risk, ω̄ > ω̄pe.

• If ψ(1 + αr) = α(1 + r) then there is no externality (∂U/∂θ = 0) and equilibrium is

constrained efficient, i.e., (l0, ω̄, θ) = (lpe
0 , ω̄

pe, θpe).

To understand the intuition behind the proposition consider that the planner inter-

nalizes the pecuniary externality faced by firms and is also aware of the presence of the

congestion externality faced by investors. As such, the planner faces a different trade-off

between leverage and risk relative to an individual firm. Recall from the firms’ problem

(3) that profits increase whenever leverage l0 is higher, or risk ω̄ is lower. Higher leverage

implies a larger scope of the firm, whereas lower risk implies that a larger share of profits is

retained by the firm. How can the planner increase the profitability of firms? Proposition

8 tells us that the answer depends on the parameters (α, r, ψ).

For example, consider the effect of an increase in liquidity on investors’ welfare. On

the one hand, increased liquidity generates ex ante welfare gains for impatient investors

because it is easier to sell unwanted bonds in the secondary market. On the other hand,

patient investors suffer as it becomes more difficult to earn a higher return by purchasing

bonds at a discounted price. The gains to impatient investors outweigh the losses to

patient investors, making investors ex ante better off, i.e., ∂U/∂θ > 0 and we say there is a

positive externality. This is the case when the model parameters satisfy ψ(1+αr) > α(1+r).

Intuitively, in this case the trade surplus that accrues to impatient investors is relatively

large. Alternatively, the return on storage that patient investors receive if they fail to

execute a secondary trade is sufficiently low, so that r < (ψ − α)/(α − αψ).
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In the case of the positive externality, in order to implement a higher level of market

liquidity the planner is going to reduce bond issuance by firms, lowering leverage and

scope of the firm. But, at the same time, the planner also reduces the risk of the financial

contract, allowing firms to retain a larger share of profits in expectation. In this way the

planner directs the firm to operate at a smaller scale, while at the same time paying lower

financing costs. By restricting bond issuance and enhancing market liquidity, the cost

of financing are much smaller than what a firm that does not internalize the externality

would have expected, because the planner is able to redistribute the gains for investors

back to firms in the form of even lower financing costs.26

In this way the planner effectively takes advantage of the congestion externality to

create additional surplus for investors that is then redistributed back to firms by addressing

the pecuniary externality. It is worth noting that the redistribution takes place through

changes in the liquidity premium, as matter of fact, as we show below, our social planner

problem can be implemented with no direct transfers from investors to firms.

By contrast, when there is a negative externality, i.e., ∂U/∂θ < 0, a reduction in

market liquidity generates gains to patient investors that outweigh the losses to impatient

investors, making investors ex ante better off. This is the case when ψ(1+αr) > α(1+ r). In

the case of a negative externality, in order to implement a lower level of market liquidity

the planner is going to increase bond issuance by firms, increasing leverage and scope

of the firm. However, at the same time the planner increases the risk of the financial

contract, reducing the expected share of profits that the firm retains. In this way the

planner allows the firm to operate at a larger scale, while at the same time paying higher

cost of financing. But financing cost are lower than what a firm that does not internalize

the externality would have expected at the new higher level of leverage, as the planner is

able to redistribute the gains for investors owing to lower liquidity back to firms in the

form of lower financing costs.

Finally, in the knife-edge case where ψ(1+αr) = α(1+ r) private liquidity is efficient so

that at the margin an increase in liquidity generates gains for impatient investors that are

perfectly offset by losses to patient investors, and the planner cannot exploit the congestion

externality to improve upon the private equilibrium. This special case highlights the

relationship of our result with the well-known Hosios condition.27 But, note that in our

26 It is interesting to note that by implementing higher secondary market liquidity, the planner in essence
increases funding liquidity in the primary market by implementing a reduction in the liquidity premium
and thus in the total bond premium.

27The parameter restriction is analogous to the Hosios (1990) rule that determines the efficient surplus
split in search and matching models of the labor market. Arseneau and Chugh (2012) study the implications
of inefficient surplus sharing for optimal labor taxation in a dynamic general equilibrium economy.
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model the planner is not trying to correct the congestion externality, rather she aims to

correct a pecuniary externality while exploiting the congestion externality.

4.1 Optimal Private Liquidity Regulation

To analyze optimal liquidity regulation we allow the planner access to a complete set of

tax instruments. Specifically, we introduce a marginal tax τs on the return from storage

in period 0 and a marginal tax τl on leverage (negative taxes correspond to subsidies).28

With these tax instruments, the objective of investors becomes U = b0Ub + s0Us(1− τs)+Ts

and the objective of the firm changes to [1 − Γ(ω̄)] Rkl0−τlλpel0+Tl. The taxes are funded in

a lump-sum fashion on the same agents, thus Tl = τlλpel0 and Ts = τss0Us in equilibrium.

Also, in order to simplify the exposition note that we have normalized the tax on leverage

by the Lagrange multiplier, λpe > 0, on the constraint faced by firms (i.e., the investors’

break-even condition (15)).

Proposition 9 characterizes the optimal regulation of private liquidity provision.

Proposition 9 (Implementation of Optimal Liquidity Regulation) The planner’s solution

can be implemented by levying distortionary taxes on the portfolio allocation decision of investors

and the financing decision of firms. The resulting optimal taxes on storage, τs, and leverage, τl,

are given by:

τs =
e0

b0

(

1 −
Us(θpe)
Us(θ)

)

, (24)

τl =
n0Usub

∂Rb

∂ω̄ τ
s + ub

[
∂Rb

∂l0
∂θ
∂ω̄ −

∂Rb

∂ω̄
∂θ
∂l0

]
∂U
∂θ

b0ub
∂Rb

∂ω̄ + ∂θ
∂ω̄

∂U
∂θ

(25)

where the term in square brackets and the denominator in (25) are strictly positive.

The role for the tax on storage is to create a wedge in the investors’ break-even condition

(15), i.e., Ub , Us as long as θpe , θ. This allows the planner to implement the desired

allocation without making investors worse off. Moreover, the role of the tax on leverage

is to make the firm internalize the pecuniary externality of bond issuance on its funding

costs.

Combining the insights of Proposition 9 with Proposition 8 above, it is easy to charac-

terize the optimal tax system more specifically. When ψ(1 + αr) > α(1 + r), the liquidity

externality is positive so that the planner wants to implement higher liquidity relative to

28We consider tax instruments to correct the distorted margins, both other instruments such as leverage
or portfolio restrictions could also be considered. See also Perotti and Suarez (2011), who propose Pigouvian
taxation to address externalities from the under-provision of liquidity.
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the private equilibrium, θ > θpe. Accordingly, the optimal regulation needs to be designed

in a way that results in investors holding a more liquid portfolio. This can be achieved

through a storage subsidy, so that τs < 0. Moreover, the optimal regulation needs to

be designed in a way that results in firms issuing fewer bonds in the primary market,

which can be achieved through a tax on leverage, so that τl > 0. By the same logic, when

ψ(1 + αr) < α(1 + r), the liquidity externality is negative and θ < θpe. The optimal tax

system calls for a tax on storage, τs > 0, and a leverage subsidy, τl < 0. Only in the

knife-edge case where ψ(1 + αr) = α(1 + r) we have that τl = τs = 0.

4.2 A Numerical Illustration

We continue the numerical example in section 3.5. Recall that in this illustration, ψ = 1.

Moreover, because the planner has the same objective as the firm, the isoprofits lines

are the same in both problems. Figure 7 shows the planner’s solution and the private

equilibrium for two cases: δ = 0 and δ = 0.1. In a frictionless environment (δ = 0), the

planner’s solution coincides with the private equilibrium (as we proved in Proposition

3). However, when there is a positive demand for liquidity, δ > 0 and β < 1/(1 + r),

and secondary market liquidity is not sufficiently high to guarantee f (θ) = 1, the planner

chooses lower leverage and a less risky bond contract, i.e., lower l0 and ω̄. The reason

is because the planner internalizes the effect of the leverage decision on liquidity in the

secondary market. This induces the planner to consider a steeper constraint compared to

the breakeven condition considered by firms (where market liquidity is taken as given).

As a result, the planner understands how lower leverage and risk improves borrowing

terms on the margin, when the total social costs are taken into account.

Table 1 shows the change in equilibrium allocations between the private and planner’s

solutions for δ = 0.1 as ψ moves from 1 to 0. Consistent with the analysis above, the

planner’s allocations can be replicated using appropriate tax instruments (subsidies if

they are negative) on leverage and storage. For ψ = 1, the liquidity externality is positive

implying that liquidity is suboptimally low in the private equilibrium. The planner would

like to implement a tax on leverage to generate more liquidity in the secondary market (in

this case all the surplus goes to sellers so the tax on storage is irrelevant). However, as the

share of the gains from trade that accrues to impatient investors declines, the size of the

liquidity externality shrinks. Hence, the planner is less aggressive in choosing the optimal

combination of leverage tax and storage subsidy, i.e., both τl and τs shrink in absolute

value. When the parameterization of ψ satisfies ψ(1 + αr) = α(1 + r), the externality zeros

out and the optimal tax system implies τl = τs = 0. For values of ψ below that point, the

34



liquidity externality becomes negative, so that liquidity is over-provided in the private

equilibrium. Accordingly, the sign of the optimal tax system flips so that leverage is

subsidized, τl < 0, and storage is taxed, τs > 0.

5 Optimal Public Liquidity Management

In this section, we examine how the optimal management of public liquidity can alleviate

trading frictions and improve economic efficiency beyond what can be achieved by liq-

uidity regulation, as studied in the previous section. Through the lens of our model, any

public policy that alters both private and public portfolios effectively shifts liquidity risk

between the private and the public sector. This shifting of liquidity risk alters the liquidity

premia which, in turn, influences savings and investment decisions in the real economy.

In practice, important policies that can alter public and private portfolios are quantitative

easing or large scale asset purchases, as the ones implemented in the U.S., Europe, and

Japan.

5.1 Quantitative Easing Policy

We model QE through direct purchases by the central bank of long-term illiquid assets (the

financial contracts issued by firms and which are retraded by investors in OTC markets).29

These purchases are financed by the issuance of short-term liquid liabilities, referred to

as reserves, that offer a return that is at least as large as that offered by the storage

technology. This seems a reasonable approximation for the policies implemented by the

Federal Reserve during the Great Recession, where lending facilities and asset purchases

were financed primarily with redeemable liabilities in the form of reserves (see Carpenter

et al. 2013).

The key assumption we make to model QE is that the assets purchased by the central

bank are relatively less liquid than reserves. This could be viewed as a strong assumption

for the Federal Reserve QE program, which was limited to U.S. Treasuries and Agency

Mortgage Backed Securities. While it might be the case that these assets are highly liquid at

or near origination, the evidence suggests that they become less liquid as they are retraded

in venues that might be well represented by OTC markets.30 This becomes less of a concern

when considering QE programs in other jurisdictions, like Europe or Japan, where central

29Note that a pool of firms’ contracts will have no credit risk, since there are no aggregate shocks.
30Vayanos and Weill (2008) argue that the off-the-run phenomenon can be explained by trade frictions in

U.S. Treasury markets. Vickery and Wright (2013) describe the TBA market and the the market for “specified
pool” agency MBS as OTC markets.
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banks have purchased non-government guaranteed assets, which are perceived as less

liquid than central bank’s reserves.

At the beginning of the initial period, the central bank credibly commits to purchase

a quantity b̄0 of bonds from investors and hold them to maturity. These bond purchases

are financed through the issuance of s̄0 units of reserves that pay interest r̄. In our model

reserves are a perfect substitute for the storage technology from the point of view of

investors, thus r̄ ≥ r.31 The central bank waits for the primary debt market to clear and

then meets with investors to exchange reserves for bonds. The QE operation is conducted

in a frictionless market that meets after bonds have been issued but before the OTC market

opens.32

Investors can freely trade reserves for consumption with the central bank at any point.33

The central bank budget constraint in the initial period is simply

b̄0 = s̄0 . (26)

In addition, we assume the central bank finances itself in period 1 with reserves only.

This assumption prevents the central bank from injecting additional resources into the

economy in the interim period. In order to keep its bond holdings, the central bank needs

to roll over its outstanding reserves and pay interest on them in period 1. The central bank

will have to borrow an amount equal to (1 + r̄)s̄0.34 Finally, in period 2 the central bank

receives the debt payout from the financial contract and expends (1 + r̄)2s̄0 in interest and

principal on outstanding reserves. It is assumed that the central bank allocates reserves

evenly across investors who demand reserves in a given time period.

The central bank faces three constraints that, taken together, serve to limit the size of

its QE program. First, we assume that the central bank is at a disadvantage relative to the

private sector in monitoring investment projects. It thus needs to pay a higher monitoring

cost relative to investors, denoted by μ̄ > μ. Consequently, any positive effects of QE

would not accrue from enhanced monitoring, but from its effect on liquidity premia. This

31Our results are qualitatively the same if we impose that r̄ = r. Nonetheless, as we will show in the next
section, allowing the central bank to pay higher interest on reserves provides the central bank an additional
tool to manage public liquidity.

32We have abstracted from trade frictions between the central bank and investors, as in practice the Federal
Reserve announces in advance its intention to buy bonds and has readily available trading counterparties.

33This is isomorphic to a model in which trade in the Fed Funds market is frictionless. Another literature
studies frictional trade in the Fed Funds market, see, for example, Afonso and Lagos (2015) or Bianchi and
Bigio (2014).

34In practice, the long-term assets held by central banks pay interest in the interim period, and in an
environment of low short-term interest rates these holdings will generate a positive net-interest income for
the central bank. But for simplicity we abstract from these considerations. See, for instance, Carpenter et
al. (2013) for estimates of net-interest income for the Federal Reserve.
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implies that in expectation the central bank anticipates receiving R̄bb̄0 for its asset holdings,

with R̄b the expected hold-to-maturity return on financial contracts for the central bank,

given by35

R̄b(l0, ω̄) =
l0

l0 − 1
Rk [Γ(ω̄) − μ̄G(ω̄)

]
= Rb(l0, ω̄) −

l0

l0 − 1
Rk(μ̄ − μ)G(ω̄) .

Second, the central bank needs to fully finance its funding cost, i.e., the total interest

on reserves, with its expected return on assets. That is,

R̄b ≥ (1 + r̄)2 . (27)

Note that if the central bank buys a portfolio of bonds, it does not undertake any credit

risk, as firms’ returns are independent.

Finally, we assume that investors cannot be made worse off by QE, as we describe in

section 5.3.

5.2 QE, Market Liquidity, and the Supply of Credit

In period 0 investors allocate their wealth across two assets: the storage technology and

bonds. So the budget constraint at t = 0 is given by s0+bs
0 = e0, with s0, bs

0 ≥ 0. Subsequently,

investors exchange b̄0 bonds for s̄0 reserves with the central bank. Following the approach

of Section 2, we consider the optimal behavior of impatient and patient investors in t = 1

when they arrive with a generic portfolio of storage, reserves, and bonds (s0, s̄0, bs
0 − b̄0).

Impatient Investors. By Assumption 3 impatient investors want to consume all their

wealth at t = 1. They can consume the payouts of their liquid assets: (1 + r)s0 + (1+ r̄)s̄0; in

addition, they can consume the proceeds from their sell orders in the OTC market: q1 units

of consumption for each order executed. Thus, the expected consumption of impatient

investors in periods 1 and 2, respectively, is given by

cI
1 = (1 + r)s0 + (1 + r̄)s̄0 + f (θ)q1(bs

0 − b̄0) , (28)

and cI
2 = (1 − f (θ))R(bs

0 − b̄0) . (29)

Patient Investors. Patient investors only value consumption in the final period and, as a

35Note that the central bank in the model buys bonds at face value. This implies that the effect of QE
does not rely on the purchase of bonds at distressed values. In addition, if the central bank purchases bonds
at a discount it will increase the expected return on asset purchases and relax constraint (27).
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result, are willing to place buy orders in the OTC market because the return from doing so,

Δ, is strictly greater than the return on storage, 1 + r. Moreover, it is also the case that the

return on reserves, 1+r̄, is at least as large as that on storage, so patient investors are willing

to allocate liquid wealth to reserves. Accordingly, liquidity provision in the secondary

market will depend on the return on OTC trade, Δ, relative to the return on reserves,

1 + r̄. Specifically, if 1 + r̄ < Δ patient investors will pledge all their liquid wealth to place

buy orders in the OTC market. On the other hand, if 1 + r̄ > Δ patient investors will use

their liquid wealth to buy higher yielding reserves first and then allocate the remainder of

their liquid wealth to placing buy orders in the OTC market. For expositional purposes,

we assume throughout the remainder of the paper that 1 + r̄ < Δ (although for the main

results of this section—stated below in Propositions 10 and 11—we trace out the proofs

over the entire parameter space of the model, where appropriate).

When the anticipated return to OTC trade exceeds the return on reserves, patient

investors use (1 + r)s0 + (1 + r̄)s̄0 units of consumption to place buy orders. A fraction p(θ)

are matched allowing patient investors to exchange consumption for bonds, while the

1 − p(θ) unmatched portion needs to be reinvested in liquid assets in period t = 1. Given

that the central bank needs to finance itself in the interim period, it will reallocate reserves

to patient investors, hence individual reserve holdings in the interim period for patient

investors, s̄P
1 , total (1 + r̄)s̄0/(1 − δ). All remaining units of consumption are placed into

the lower yielding storage technology, so expected storage holdings at the end of t = 1, sP
1 ,

equal sP
1 = (1 − p(θ)) [(1 + r)s0 + (1 + r̄)s̄0] − (1 + r̄)s̄0/(1 − δ), which is strictly positive from

Assumption 4. It follows that expected consumption of patient investors equals

cP
2 = sP

1 (1 + r) +
(1 + r̄)2s̄0

1 − δ
+

{

bs
0 − b̄0 + p(θ)

(1 + r)s0 + (1 + r̄)s̄0

q1

}

R . (30)

Using the optimal behavior of investors in period 1, summarized in equations (28)-

(30), we can rewrite the expected lifetime utility as the portfolio weighted average of the

utilities of the three assets available in the initial period: U = Uss0 + Us̄s̄0 + Ub(bs
0 − b̄0).

As before, the expected utility of investing in storage and bonds, Us and Ub, are given by

equations (13) and (14), respectively. On the other hand, the expected utility of reserves is

given by

Us̄ = δ(1 + r̄) + (1 − δ)(1 + r̄)
[
(1 − p(θ))(1 + r) +

r̄ − r
1 − δ

+ p(θ)Δ
]
. (31)

Reserves yield 1 + r̄ for impatient investors. For patient investors, there is additional

compensation that comes from the expected return from buy orders in the secondary

market, plus the spread between reserves and storage, r̄− r ≥ 0, for the additional reserves
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bought in period 1.36

Finally, note that, when the equilibrium in the credit market is given by (b0,Rb) , market

liquidity corresponds to

θ =
(1 − δ)[(1 + r)s0 + (1 + r̄)s̄0]

δ(b0 − b̄0)q1
=

(1 − δ)Δ
[
(1 + r) (e0 − n0(l0 − 1)) + (1 + r̄)b̄0

]

δRb
(
n0(l0 − 1) − b̄0

) . (32)

This expression establishes a link between QE and secondary market liquidity which we

summarize in the following proposition.

Proposition 10 (The Real Effects of QE) Quantitative easing, i.e., the size of the bond buying

program, b̄0, increases secondary market liquidity θ and, hence, increases firm’s investment.

The intuition behind this result is straightforward. Each bond bought by the central

bank will be held to maturity and, therefore, reduces the number of sell orders in the

secondary market. At the same time, these bonds need to be financed with reserves,

which patient investors can use to submit additional buy orders in the secondary market.

So, a bond buying program has a direct effect on secondary market liquidity because it

alters the composition of investor’s portfolios away from illiquid bonds toward publically

provided liquid assets. The resulting reduction in the liquidity premium demanded by

investors pushes down the cost of funding for firms, who respond by taking on higher

leverage and risk in equilibrium. This later indirect effect attenuates the effect of the QE

program as increased bond issuance by firms crowds out public and private liquidity.

It should also be noted that Proposition 8 is presented from the perspective of a

central bank that wants to increase liquidity by expanding reserves in order to purchase

illiquid bonds. But, this result is more general. A central bank that starts with an initial

endowment of bonds could remove liquidity by becoming a net seller to investors of

illiquid bonds in exchange for reserves. A quantitative tightening (QT) program such as

this would effectively withdraw public liquidity and reduce secondary market thickness.

5.3 Optimal Public Liquidity Management via Quantitative Policies

To understand the role of QE in the optimal policy mix, we consider a planner who

wants to maximize firm profits, but is restricted by the central bank budget constraint,

equation (26), and the financing constraint, equation (27). In addition, as with the planner

36If, 1 + r̄ > Δ, patient investors will use their liquid wealth first to buy reserves, and then will use their
remaining liquid wealth to place buy orders in the OTC market. Proceeding as above we can derive for
patient investors sP

1 , cP
2 , and Us̄.
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in Section 4, we assume the QE program cannot make investors worse off. To write this

later constraint, let U(l0, ω̄, θ, b̄0, r̄) be the expected lifetime utility of investors when the

equilibrium is described by (l0, ω̄, θ), with the secondary market price given by (7), and

the QE program described by (b̄0, r̄). Similarly, let U(lpe
0 , ω̄

pe, θpe) be the expected lifetime

utility of investors in the private equilibrium, when the secondary market price is given by

(7). We refer to this planner that have access to QE policies as the central bank. Then, the

central bank’s problem can be written as maxl0,ω̄,θ,b̄0,r̄ [1 − Γ(ω̄)] Rkl0, subject to equations

(26), (27), (32), and

U(l0, ω̄, θ, q1, b̄0, r̄) ≥ U(lpe
0 , ω̄

pe, θpe, qpe
1 ) (33)

The following proposition characterizes the role of QE as part of the optimal policy

mix.

Proposition 11 (QE as Part of the Optimal Policy Mix) The optimal design of QE conditional

on the model parameters (α, r, ψ) is described as follows:

• If ψ(1 + αr) > α(1 + r) , then QE improves upon the constrained efficient allocation, and the

optimal QE program consists of a positive bond buying program, b̄0 > 0, coupled with an

interest on reserves that is strictly greater than the return on storage, r̄ > r.

• If ψ(1 + αr) ≤ α(1 + r) , then QE does not improve upon the constrained efficient allocation,

and optimally the size of the QE program is b̄0 = 0.

The QE program is effective because it affects market thickness, which in the presence of

a liquidity externality, allows the central bank to increase the expected utility of investors

and transfer those gains to firms. Intuitively, the QE program transfers illiquid bonds

from investors, who value liquidity, to the central bank, who does not value liquidity

because it is a long-term investor and is not subject to runs.

The public provision of liquidity is inherently different from liquidity regulation. Both

policies affect the level of market liquidity, but regulation trades off liquidity and credit

provision, whereas public liquidity management implies that public liquidity provision

and credit provision move in tandem. This is due to the fact that public liquidity provi-

sion enhances the intermediation technology of the economy, as the transfer of liquidity

risk between the public and private sector can only be achieved in the model through

quantitative policies.

However, the proposition shows that this technological improvement can only be

realized when there are social gains from managing liquidity. Indeed, when the liquidity

externality does not exist, i.e., the knife edge case where ψ(1 + αr) = α(1 + r), there is
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no role for the management of public liquidity. When the externality is negative (so

that liquidity is suboptimally high in the private equilibrium), the central bank wants to

remove liquidity from the secondary market. As discussed at the end of the previous

subsection, this could, in principle, be done through a QT program, whereby the central

banks reduces the size of its balance sheet by selling bonds to investors in exchange for

reserves.

There are a few additional points worth mentioning. First, note that the proposition

suggests QE is effective when the interest rate on storage is sufficiently low, r < (ψ −

α)/(α − αψ). Although it is beyond the scope of this model, these conditions indicate that

QE may be an effective policy response in a protracted low interest rate environment. By

the same token, the proposition also suggests that QT can be optimal when the interest rate

is sufficiently high, so that r > (ψ−α)/(α−αψ). In the context of the current policy debate,

our framework offers support for a strategy of raising interest rates prior to unwinding

the size of the balance sheet.

Second, while we have shown that the optimal management of public liquidity can

lead to a Pareto improvement, these quantitative policies do not explicitly address the

externalities identified in Section 4. Indeed, a QE program is optimal when liquidity is

inefficiently low, or equivalently, when firm’s leverage and the riskiness of the contracts

it offers to investors are inefficiently high. While QE is effective at boosting liquidity, it

does so at the expense of encouraging firms to take on even more leverage and write

even riskier contracts. This opens the door for optimal liquidity management (through

quantitative policies) to coexist with optimal liquidity regulation, echoing a similar result

found in Holmström and Tirole (1998). We examine this in more detail in the quantitative

exercise below.

Finally, its useful to note that when QE is effective, the absence of constraints that

limit the size of the program could lead to an extreme outcome in which the central bank

disintermediates the bond market. That is, the optimal policy is for the central bank to

buy all the bonds offered by the firm and offer the corresponding amount of reserves to

investors, paying r̄ = r. Doing so would allow the central bank to replicate the frictionless

benchmark of section 3.2. However, as mentioned above, in our model the size of the QE

program is limited by the constraints faced by the central bank.

5.4 A Numerical Illustration

Table 2 extends our numerical example to study the optimal public liquidity management,

as implemented through QE. The table shows the changes in allocations relative to the
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private equilibrium for three different economies. The first column shows the decentral-

ization of the socially efficient outcomes achieved through optimal liquidity regulation

(implemented with the leverage tax, τl, and storage subsidy, τs) , but without QE. The

second column shows the effects of QE in absence of liquidity regulation. Finally, the third

column shows the case in which liquidity management coexists with liquidity regulation.

All cases assume the parameterization α = 0.5, ψ = 0.9, and r = 0.01. We choose this

parameterization because it puts the model in a region of the parameter space where QE

is effective, as per proposition 11. In addition, we assume that μ̄ = 0.3, which is 50 percent

higher than the baseline value of μ = 0.2.

The first column (which, for reference, corresponds to a point half way between the

results shown in the first and second columns of table 1) shows that in absence of QE,

the efficient allocation is decentralized with a leverage tax, τl = 0.21, and a subsidy for

storage, τs = −0.04. By raising liquidity in the secondary market, and hence depressing

the liquidity premium, the resulting reduction in funding costs raises profits by 14 basis

points relative to the private equilibrium, leaving the utility of investors unchanged. The

second column presents results where we shut down liquidity regulation, but allow the

planner access to a QE program. Even when we shut down the tax system, so that

τl = τs = 0, the planner can use QE to achieve an even greater increase in firm profitability

without harming investors. With QE the planner can achieve a similar outcome in terms

of liquidity, without tax instruments. Finally, the last column of the table shows that

QE, by itself, is not a panacea. A planner can do even better by implementing optimal

liquidity management through QE in conjunction with liquidity regulation. The way to

interpret this last result is that although QE improves the intermediation technology in the

economy, it does nothing to remove the underlying distortions, arising from the pecuniary

and congestion externalities discussed above.

Figure 8 shows how the gains to the firm vary with ψ for different levels of the

efficiency of the central bank monitoring technology. The thick lines show the case for

μ̄ = 0.3 assuming QE in conjunction with the optimal tax system (the thick solid line) and,

alternatively, assuming QE alone with no supporting tax system (the thick dashed line).

The thin solid and dashed lines correspond to the same information when the monitoring

cost is lower, so that μ̄ = 0.2. Finally, the thin dotted line shows the gains to the firm

from optimal tax policy alone in absence of QE. There are four things to take from the

figure. First, QE is always more effective when combined with the optimal tax policy (the

solid lines are always above the dashed line for the same monitoring cost assumption).

Second, the effectiveness of QE is limited by the parameterization of ψ (the dashed lines

are downward sloping), so that as the gains from trade that accrue to impatient investors
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decline, QE becomes less effective. Third, the effectiveness of QE depends importantly on

the quality of the central bank’s monitoring technology (the thick lines are below the thin

ones, so the worse the technology, the less effective is QE). Finally, there are parts of the

parameter space in which QE is ineffective to the point at which a planner would strictly

prefer optimal taxation to QE (the regions in which the thick and thin dashed lines lie

below the thin dotted line).

6 Conclusion

We show that trade frictions in OTC markets provide a rationale for the regulation and

public management of market liquidity. In our model, investors face liquidity risk and

need to allocate their limited liquid resources between liquidity provision and illiquid

long-term bonds. Bonds provide credit to productive firms, so there is a trade-off between

liquidity and credit provision. Trade friction together with this trade-off result in an

inefficiency because investors and firms fail to internalize how their actions affect liquidity

in the secondary market. A novel aspect of our model is that private liquidity can be either

inefficiently high or inefficiently low, depending on the incentives faced by investors. We

provide an analytic characterization of the distortions and show how the socially efficient

equilibrium can be decentralized with two tax instruments. Finally, we show how both

the provision (as in QE) as well as the withdrawal of public liquidity can enhance welfare.

Our model suggests a set of testable predictions for the relationship between the

availability of short-term liquid assets and liquidity premia. While there is only a single

OTC market in our setup, in practice there are many, potentially segmented secondary

markets (see, for example, Vayanos and Wang, 2007 and Vayanos and Weill, 2008). Given

that central bank reserves can be used to settle transactions across most markets, we

expect that quantitative easing should have an effect on the liquidity premia of not just

those illiquid assets directly purchased by central banks, but all securities traded in OTC

markets where participants’ portfolios are affected by the policy (see Christensen and

Krogstrup (2016) for related empirical support). Our model also suggests that QE will

be more effective when the assets purchased by the Central Bank are more illiquid. In

this sense, our mechanism provides an explanation for the fact that the Federal Reserve’s

strategy of purchasing relative illiquid mortgage-backed securities in the aftermath of the

financial crisis might have been more effective than exchanging long-term Treasury bonds

with shorter maturity ones as argued in Krishnamurthy and Vissing-Jorgensen (2011).

There are a number of directions for future work. First of all, our paper opens up

new avenues for research on optimal liquidity provision when financial intermediation is

43



conducted in markets with OTC characteristics. Second, it would be interesting to explore

the quantitative relevance of the mechanism described in this paper. To this end, we have

deliberately stayed very close to the quantitative model of Bernanke et al. (1999). Finally,

another interesting extension of our model would be to jointly consider bank- and bond-

financing and study the interaction of these two sources of funding for the real economy,

as well as the spillovers from bank (liquidity) regulation on market liquidity (bank credit

provision).
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Tables and Figures

Table 1: Planning outcomes and Implementation

ψ 1.0 0.8 0.6 0.4 0.2 0.0

% change in l0 -8.62% -5.03% -1.63% 1.72% 5.13% 8.63%

% change in ω̄ -5.27% -3.06% -0.99% 1.04% 3.08% 5.17%

% change in θ 62.01% 27.75% 7.44% -6.70% -17.42% -26.03%

% change in Π 0.23% 0.07% 0.01% 0.01% 0.06% 0.16%

% change inU 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

τl 0.27% 0.15% 0.05% -0.05% -0.13% -0.21%

τs 0.00% -0.05% -0.03% 0.04% 0.14% 0.27%

Note: Percentages correspond to deviations with respect to the private equilibrium for variables: leverage (l0), risk (ω̄), market liquidity
(θ), firms’ profits (Π), and investors’ utility (U); and to the level of the optimal taxes on leverage (τl) and storage (τs). Negative values
for taxes corresponds to subsidies. For details see section 4.2.

Table 2: Outcomes with Quantitative Easing

Constrained Efficient Quantitative Easing Quantitative Easing

Allocations with τs = τl = 0 with τs, τl Chosen Optimally

% change in l0 -6.78% 1.68% -3.05%

% change in ω̄ -4.13% 0.72% -2.35%

% change in θ 42.19% 43.37% 167.72%

% change in Π 0.14% 0.42% 0.98%

% change inU 0.00% 0.00% 0.00%

r̄ 1.16% 1.10%

s̄0 0.09 0.18

τl 0.21% 0.17%

τs -0.04% -0.05%

Note: Percentages correspond to deviations with respect to the private equilibrium for variables: leverage (l0), risk (ω̄), market liquidity
(θ), firms’ profits (Π), and investors’ utility (U); and to the level of: tax on leverage (τl), tax on storage (τs), and interest rate on reserves
(r̄). Values for reserves (s̄0) are in levels. Negative values for taxes corresponds to subsidies. For details see section 5.4.
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Figure 4: Equilibrium in the Frictionless Benchmark

 

 

Break-even condition
Inidifference curves of firm
Equilibrium

Note: For details see section 3.5.

Figure 5: Comparative Statics on δ.
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Note: δ take values in {0, 0.1, . . . , 0.5}. See section 3.5.
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Figure 6: Bond Premia Decomposition
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Note: For details see section 3.5.

Figure 7: Constrained Efficient Equilibrium
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Figure 8: Effect of Quantitative Easing
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Online Appendix

Proofs and Derivations

Proof of Theorem 1: We need to show that there is a unique equilibrium, and that in this
equilibrium credit is not rationed. For that, first, we establish that the privately optimal contract
is an interior solution to the firm’s optimization problem (Part 1). Then, we establish existence of
equilibria (Parts 2). Finally, we establish uniqueness (Part 3).

Part 1. The privately optimal contract is interior.
First of all, note that from the definition of Γ(ω) and G(ω) it follows that for any ω̄ > 0

Γ(ω̄) > 0 , 1 − Γ(ω̄) = P(ω ≥ ω̄)E[ω − ω̄|ω ≥ ω̄] > 0

1 > Γ′(ω̄) = 1 − F(ω̄) > 0 , Γ′′(ω̄) = −dF(ω̄) < 0

0 < G(ω̄) < 1 , μG(ω̄) < G(ω̄) < Γ(ω̄)

G′(ω̄) = ω̄dF(ω̄) > 0 , G′′(ω̄) = dF(ω̄) + ω̄
d(dF(ω̄))

dω̄

lim
ω̄→0

Γ(ω̄) = 0 , lim
ω̄→∞

Γ(ω̄) = ω̄P(ω ≥ ω̄) + P(ω < ω̄)E[ω|ω < ω̄] = 1

lim
ω̄→0

G(ω̄) = 0 and lim
ω̄→∞

G(ω̄) = 1 .

(A.1)

In addition, from Assumption 2, ω̄dF(ω̄)/(1−F(ω̄)), is increasing so, 1−μω̄dF(ω̄)/(1−F(ω̄)),
has only one root, which is strictly positive and is denoted by ˉ̄ω > 0. Then,

Γ′(ω̄) − μG′(ω̄) = (1 − F(ω̄))

(

1 − μ
ω̄dF(ω̄)
1 − F(ω̄)

)




> 0 if ω̄ < ˉ̄ω

= 0 if ω̄ = ˉ̄ω

< 0 if ω̄ > ˉ̄ω

.

The value of the firm, [1 − Γ(ω̄)] Rkl0, is increasing in leverage, l0, and decreasing in risk, ω̄. In
addition, if investors’ expected (hold-to-maturity) return is R ∈ [(1 + r)2,Rk], then R = Rb(l0, ω̄)
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imply that

lier
0 (ω̄) =

R
R − Rk[Γ(ω̄) − μG(ω̄)]

. (A.2)

Since Γ(ω̄) − μG(ω̄) attains a maximum at ˉ̄ω

lier
0 (ω̄) ≤

R
R − Rk[Γ( ˉ̄ω) − μG( ˉ̄ω)]

≤
(1 + r)2

(1 + r)2 − Rk[Γ( ˉ̄ω) − μG( ˉ̄ω)]
≡ ˉ̄l0

It follows that the firm will never choose risk above ˉ̄ω, as additional risk, which reduces firm’s value,
does not allow the firm to increase leverage. Therefore, the firm chooses a level of risk 0 ≤ ω̄ ≤ ˉ̄ω
and value of leverage 1 ≤ l0 ≤ ˉ̄l0.

To establish the properties of the optimal contract, it will be useful to consider the following
contract problem

max
l0,ω̄

[1 − Γ(ω̄)] Rkl0 (A.3)

s.t. Rb(l0, ω̄) = R , 1 ≤ l0 ≤ ˉ̄l0 and 0 ≤ ω̄ ≤ ˉ̄ω .

Note that since the firm’s objective is continuous the maximum is achieved in the closed set defined
by the constraints. Now we want to establish that the maximum is interior, i.e. 0 < ω̄ < ˉ̄ω or
equivalently 0 < l0 < ˉ̄l0. We write the Lagrangian for this problem as

L = [1 − Γ(ω̄)] Rkl0 − λ
[
Rb(l0, ω̄) − R

]
− η̌l[1 − l0] − η̂l[l0 − ˉ̄l0] + η̌ωω̄ − η̂ω[ω̄ − ˉ̄ω]

Then, the FOC are

(l0) 0 = [1 − Γ(ω̄)] Rk − λ
∂Rb

∂l0
+ η̌l − η̂l

(ω̄) 0 = − Γ′(ω̄)Rkl0 − λ
∂Rb

∂ω̄
+ η̌ω − η̂ω

with
∂Rb

∂l0
= −

Rb

l0(l0 − 1)
< 0 and

∂Rb

∂ω̄
=

Rb[Γ′(ω̄) − μG′(ω̄)]

Γ(ω̄) − μG(ω̄)
. (A.4)

Suppose now ω̄ = 0 and l0 = 1 then η̌l, η̌ω > 0. Note that lier
0 (0) = 1, then, from the FOC

0 < η̌l = −Rk − λ
Rb

l0(l0 − 1)
< 0 ,

which is a contradiction. So we conclude that ω̄ > 0 and l0 > 1. Similarly, if ω̄ = ˉ̄ω and l0 = ˉ̄l0

from the FOC

0 < η̂ω = −Γ′( ˉ̄ω)Rk ˉ̄l0 − λ
Rb[Γ′( ˉ̄ω) − μG′( ˉ̄ω)]

Γ( ˉ̄ω) − μG( ˉ̄ω)
< 0 ,

which is a contradiction. So we conclude that ω̄ < ˉ̄ω and l0 < ˉ̄l0.
Thus, we conclude that there exist a solution to the modified contract problem (A.3) and this
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solution is interior.

Part 2. Existence of equilibria.
Let J : C → R, with C = [(1 + r)2,Rk] . For R ∈ C, J(R) is defined as follows. Given R

define (l0(R), ω̄(R)) as the solution to the optimization problem (A.3). Note that the solution to the
contract problem is feasible, as ˉ̄l0 < e0/n0 + 1 from Assumption 4.

Use (l0(R), ω̄(R)) to calculate b0(R) = n0(l0(R) − 1) and s0(R) = e0 − b0(R) and θ(R) as

θ(R) =
(1 − δ)s0(R)(1 + r)Δ

δb0(R)R
.

Then,

J(R) =
Us(θ(R))
ub(θ(R))

Intuitively, for any hold-to-maturity two-period return R , the function J(R) gives the hold-to-
maturity return that makes investors indifferent between liquid storage and illiquid two-period
bonds, given that firms optimally choose the contract given R and that the level of secondary market
liquidity is consistent with the investors portfolios that support the optimal firms’ bond issuance
b0(R). It follows that a fix point of J constitute a private equilibrium.

Now we want to show that J is a continuous single valued function and J(C) ⊂ C, so J has
a fixed point R = J(R), which constitute a non-rationing equilibrium.

First, we show that J is a single valued function. For that it suffices to show that the optimal
contract as a function of R is a single valued function. The objective of the firms’ problem is concave
as Γ′(ω̄) > 0. But the feasible set defined by the constraints to the firm’s optimization problem,
given R, is not convex, so we need to rule out that the firm’s indifference curves and the investors’
expected return condition, R = Rb(l0, ω̄), intersect more than once.

On the one hand, the firm’s indifference curves are described by

lic
0 (ω̄) =

L
Rk[1 − Γ(ω̄)]

,

where L is a constant that describes the level of profits at the indifference curve. Then,

dlic
0

dω̄
=

L Γ′(ω̄)

Rk[1 − Γ(ω̄)]2
.

On the other hand, differentiating (A.2) we get

dlier
0

dω̄
=

RRk[Γ′(ω̄) − μG′(ω̄)]
(
R − Rk[Γ(ω̄) − μG(ω̄)]

)2
.

At the optimal contract, these two curves intersect. We use the condition that the two curves
intersect to express L in terms R. In fact, lic

0 = lier
0 imply

L =
RRk[1 − Γ(ω̄)]

R − Rk[Γ(ω̄) − μG(ω̄)]
.
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Moreover, these two curves have the same slope, i.e., dlic
0 /dω̄ = dlibec

0 /dω̄, if and only if

Γ′(ω̄)
1 − Γ(ω̄)

=
Rk[Γ′(ω̄) − μG′(ω̄)]

R − Rk[Γ(ω̄) − μG(ω̄)]

Rk − R
μRk

= G(ω̄) +
[1 − Γ(ω̄)]G′(ω̄)

Γ′(ω̄)
≡ H(ω̄) . (A.5)

The functionH(ω̄) is a strictly increasing function of ω̄. In fact,

H′(ω̄) =
[1 − Γ(ω̄)]
Γ′(ω̄)2

[Γ′(ω̄)G′′(ω̄) − G′(ω̄)Γ′′(ω̄)] =
[1 − Γ(ω̄)]
Γ′(ω̄)2

d(ω̄h(ω̄))
dω̄

(1 − F(ω̄))2 > 0 .

Then we conclude that there is only one solution to the firms’ maximization problem. Therefore,
(l0(R), ω̄(R)) are single valued functions and so are b0(R), s0(R), θ(R), and J(R).

It follows from above that J(R) is continuous. In fact, H(ω̄) is a continuous function with
H′(ω̄) > 0, so by the Implicit Function Theorem ω̄(R) is a continuous strictly decreasing function
in C, i.e., ω̄′(R) < 0. That is, the risk of the optimal contract is decreasing in the expected hold-
to-maturity return offered to investors. Then, from the investors’ expected return condition (A.2)
l0(R) is a continuous function in C, given that R = Rb > Rk[Γ(ω̄)−μG(ω̄)] . It follows, that b0(R)
and s0(R) are continuous in C, and thus, that θ(R) and J(R) are continuous in C.

Now we show that J(R) ≥ (1 + r)2 and J(R) ≤ Rk. From (1 + r) ≤ Δ ≤ β−1 we have that

δ(1 + r) + (1 − δ)(1 + r)2 ≤ Us(θ(R)) ≤ δ(1 + r) + (1 − δ)(1 + r)Δ

and δβ + 1 − δ ≤ ub(θ(R)) ≤ δΔ−1 + 1 − δ .

On the one hand, from Assumptions 1 and 3 we have that

δ[1 + r − βRk] ≤ 0 ≤ (1 − δ)[Rk − (1 + r)Δ] .

Rearranging,

J(R) ≤
δ(1 + r) + (1 − δ)(1 + r)Δ

δβ + 1 − δ
≤ Rk .

On the other hand, since Δ ≥ 1 + r we have that

J(R) ≥
δ(1 + r) + (1 − δ)(1 + r)2

δΔ−1 + 1 − δ
≥ (1 + r)2 .

Part 3. Uniqueness: Show that J(R) is decreasing in C.
Differentiating we obtain

dJ(R)
dR

= J(R)

[
1

Us(θ(R))
dUs(θ(R))

dθ
−

1
ub(θ(R))

dub(θ(ω̄))
dθ

]
dθ(R)

dR
.
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To sign this derivative note that

dUs

dθ
= (1 − δ)(1 + r)p′(θ) [Δ − (1 + r)] ≤ 0 ,

and
dub

dθ
= δ f ′(θ)

[
Δ−1 − β

]
≥ 0 .

(A.6)

where the inequalities follow from p′(θ) ≤ 0, f ′(θ) ≥ 0, and (1 + r) ≤ Δ ≤ β−1. Thus, the term in
square brackets is negative.

We are left to show that dθ/dR > 0. For that note that

dθ
dR

=
θ
s0

ds0

dR
−
θ
b0

db0

dR
−
θ
R
.

In addition, from above we had that ω̄′(R) < 0 and

dl0

dR
=

RRk[Γ′(ω̄(R)) − μG′(ω̄(R))]ω̄′(R)
(
R − Rk[Γ(ω̄(R)) − μG(ω̄(R))]

)2
< 0 .

Note that the previous inequality imply that the demand for credit by firms is downward slopping,
and it shows that the leverage of the optimal contract is decreasing in the expected hold-to-maturity
return offered to investors. Using that

ds0

dR
= −

db0

dR
,

db0

dR
= n0

dl0

dR
, and

dRb

dR
= 1 =

∂Rb

∂l0

dl0

dR
+
∂Rb

∂ω̄
dω̄
dR

.

Then

R
θ

dθ
dR

= −
dl0

dR




(
R − Rk[Γ(ω̄(R)) − μG(ω̄(R))]

)2

Rk[Γ(ω̄(R)) − μG(ω̄(R))]
+

R(e0 + n0)
l0(e0 − n0(l0 − 1))



> 0 . (A.7)

Where we used that in an interior contract l0 < e0/n0 + 1.

Proof of Proposition 1: The aggregate credit supply is determined by the investors’ break-even
condition (15), from where it follows that

dUs

dθ

[
∂θ
∂bs

0

dbs
0

dR
+
∂θ
∂R

]

=
dub

dθ

[
∂θ
∂bs

0

dbs
0

dR
+
∂θ
∂R

]

R + ub .

Then,

R
bs

0

dbs
0

dR
=

[
θ
ub

dub

dθ
−
θ
Us

dUs

dθ

]
R
θ
∂θ
∂R

+ 1

[
θ
Us

dUs

dθ
−
θ
ub

dub

dθ

]
bs

0

θ
∂θ
∂bs

0

.
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From the definition of market thickness (17)

∂θ
∂bs

0

= −
θ
bs

0

e0

(e0 − bs
0)e0

< 0 and
∂θ
∂R

= −
θ
R
,

where the inequality follows from Assumption 4. This inequality and equation (A.6) imply that the
denominator in the previous expression is non-negative. We need to rule out that the denominator
is zero, which is the case when dUs(θ)/dθ = dub(θ)/dθ = 0. This is the case when either θ > θ
and ψ = 1, or θ < θ and ψ = 0. The first case corresponds to case 3 in Proposition 3, i.e., one of the
conditions that make OTC trade irrelevant, which violates the assumption that ψ < 1 or e0 < ˉ̄e0.
The second case corresponds to the case where the liquidity premium is fixed at β−1/(1 + r) ≥ 1.
But in this case θ < θ imply that

(1 − δ)(1 + r)(e0 − b0)β−1

δb0Rk
≤

(1 − δ)(1 + r)(e0 − b0)β−1

δb0R
< min{1, ν

1
α } .

But then, rearranging and using that b0 ≤ n0(ˉ̄l0 − 1) we get

e0 ≤



δβRk min{1, ν

1
α }

(1 − δ)(1 + r)
+ 1


 b0 ≤



δβRk min{1, ν

1
α }

(1 − δ)(1 + r)
+ 1


 n0(ˉ̄l0 − 1) ,

which is in contradiction with Assumption 4, e0 >> n0. That is, the deep pocket assumption
prevents liquidity from having a finite upper bound and we conclude that liquidity cannot be
smaller than θ.

Thus, we are left to show that the numerator is positive, i.e.,

θ
ub

dub

dθ
−
θ
Us

dUs

dθ
< 1 ,

which follows from Lemma 1, i.e.,
∣∣∣εΦ`,θ

∣∣∣ < 1.

Proof of Proposition 2: Taking derivative wrt to ω̄ in equation (18) yields

dΦd(ω̄)
dω̄

=
1

Γ(ω̄) − μG(ω̄)
−
ω̄[Γ′(ω̄) − μG′(ω̄)]

[Γ(ω̄) − μG(ω̄)]2
> 0

⇔ Γ(ω̄) − μG(ω̄) − ω̄[Γ′(ω̄) − μG′(ω̄)] > 0

⇔ (1 − μ)G(ω̄) + ω̄μG′(ω̄) > 0 .

Where we used that Γ(ω̄) = ω̄Γ′(ω̄) + G(ω̄), and where the last inequality follows from 1 − μ > 0,
G(ω̄) ≥ 0 and G′(ω̄) = ω̄dF(ω̄) > 0, for any ω̄ > 0.

Proof of Proposition 3: When there is no need to compensate investors for liquidity risk, there
is no liquidity premium, i.e., Φ`(θ) = 1 and Rb = (1 + r)2. In other words, the expected return
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from lending to entrepreneurs is equal to the outside option of holding storage for two periods.
Note that we can rewrite the previous condition as k0Rk [Γ (ω̄) − μG (ω̄)

]
= (k0 − n0)(1 + r)2,

which is the break-even condition in the benchmark costly state verification model. In ad-
dition, note that entrepreneurs’ profits do not depend directly on secondary market liquidity.
We proceed by showing that Φ`(θ) = 1 under the three alternative condition stated in Proposition 3.

Condition 1: δ = 0. This implies that secondary market liquidity θ→∞, hence p(θ) = 0. Setting
δ = 0 and p(θ) = 0 yields Φ`(θ) = 1.

Condition 2: β = (1 + r)−1 then Δ = 1 + r and simple substitution yields Φ`(θ) = 1.

Condition 3: ψ = 1 and f (θ) = 1. Simple substitution yields Φ`(θ) = 1. We want to find ē0 such
that f (θ) = 1 if e0 ≥ ē0.

f (θ) = 1 ⇔ m(A,B) = A ⇔ min{νAαB1−α,B} ≥ A ⇔ θ ≥ max{ν−1/(1−α), 1}

From (A.7) we have that θ ≥ θ
(
(1 + r)2) and since ψ = 1 we have that Δ = 1 + r, so θ ≥

(1 − δ) ˉ̄s0/
(
δ ˉ̄b0

)
, where ˉ̄s0 = e0 − ˉ̄b0 and ˉ̄b0 = n0

(
ˉ̄l0 − 1

)
with ˉ̄l0 the upper bound on firm leverage

defined in the proof of Theorem 1. We impose that (1 − δ) ˉ̄s0/
(
δ ˉ̄b0

)
≥ max

{
ν−1/(1−α), 1

}
to obtain a

lower bound for the endowment of investors such that f (θ) = 1.

(1 − δ)
(
e0 − n0

(
ˉ̄l0 − 1

))
≥ max

{
1, ν−1/(1−α)

}
δn0

(
ˉ̄l0 − 1

)

e0 ≥ ˉ̄e0 =
n0

1 − δ

(
ˉ̄l0 − 1

) (
1 + δmax

{
0, ν−1/(1−α) − 1

})

Proof of Lemma 1: We want to show that the derivative of the liquidity premium wrt liquidity is
negative. Note that Us(θ), ub(θ) > 0, since the trading probabilities and returns are non-negative.
In addition, note that

dUs(θ)
dθ

= (1 − δ)(1 + r) [Δ − (1 + r)]
dp(θ)

dθ
≤ 0 ,

and
dub(θ)

dθ
= δ

[
Δ−1 − β

] d f (θ)

dθ
≥ 0 ,

where the inequalities follow from β ≤ 1/(1 + r), equations (5) and (6), and that the matching
function m(A,B) is increasing in both arguments. From equation (19) we have that

dΦ`(θ)
dθ

= Φ`(θ)

[
1

Us(θ)
dUs(θ)

dθ
−

1
ub(θ)

dub(θ)
dθ

]

≤ 0 , (A.8)

where the inequality follows from the previously established inequalities.
Regarding the second part of the Lemma, the elasticity of the liquidity premium, Φ`, with
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respect to the secondary market liquidity, θ, is written, using equation (A.8), as:

εΦ`,θ =
θ

Φ`

dΦ`

dθ
=

[
θ

Us(θ)
dUs(θ)

dθ
−

θ
ub(θ)

dub(θ)
dθ

]

, (A.9)

Then
∣∣∣εΦ`,θ

∣∣∣ < 1 requires:

−

[
θ

Us(θ)
dUs(θ)

dθ
−

θ
ub(θ)

dub(θ)
dθ

]

< 1

⇔ Us(θ)ub(θ) + θ
dUs(θ)

dθ
ub(θ) − θUs(θ)

dub

dθ
> 0 (A.10)

First, lets consider the case where θ ∈
(
θ, θ

)
. In this case, f (θ) = νθ1−α and p(θ) = νθ−α. Thus,

θ(d f (θ)/dθ) = (1 − α) f (θ) and θ(dp(θ)/dθ) = −αp(θ). Then,

dUs(θ)
dθ

θ = −αUs(θ) + α(1 + r)[δ + (1 − δ)(1 + r)] ≤ 0

dub(θ)
dθ

θ = (1 − α)ub(θ) − (1 − α)[βδ + (1 − δ)] ≥ 0 .

Then,

Us(θ)ub(θ) + θ
dUs(θ)

dθ
ub(θ) − θUs(θ)

dub

dθ

= Usub + ub {−αUs + α(1 + r)[δ + (1 − δ)(1 + r)]} −Us
{
(1 − α)ub − (1 − α)[βδ + (1 − δ)]

}

= αub(θ)(1 + r)[δ + (1 − δ)(1 + r)] + (1 − α)Us(θ)[βδ + (1 − δ)] > 0 .

Second, consider the case where θ < θ. In this case, p(θ) = 1 and f (θ) = θ, so d f (θ)/dθ = 1
and dp(θ)/dθ = dUs(θ)/dθ = 0. Want to show that ub(θ) − θ(dub(θ)/dθ) > 0. From above
dub(θ)/dθ = δ[Δ−1 − β]. Then,

ub(θ) − θ
dub(θ)

dθ
= δβ + (1 − δ) > 0 .

Finally, consider the case where θ > θ. In this case, d f (θ)/dθ = dub(θ)/dθ = 0 and
p(θ) = θ−1. Thus, we want to show that Us(θ)+θ(dUs(θ)/dθ) > 0. From above, θ(dUs(θ)/dθ) =
−θ−1(1 − δ)(1 + r)[Δ − (1 + r)]. Then,

Us(θ) + θ
dUs(θ)

dθ
= δ(1 + r) + (1 − δ)(1 + r)2 > 0 .

Proof of Proposition 4: For this proof we consider the liquidity premium a function of both
market thickness, θ, and model parameters δ and β, and consider market thickness as a function
of R, which we will take as given, and model parameters δ, β, and e0. That is, we can write the
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liquidity premium as Φ`(θ, δ, β).

Case 1: Effect of δ. Want to show that

dΦ`

dδ

∣∣∣∣∣
R
=
∂Φ`

∂δ
+
∂Φ`

∂θ
dθ
dδ

∣∣∣∣∣
R
> 0 .

From the definition of secondary market liquidity, given in equation (17) we have that

dθ
dδ

∣∣∣∣∣
R
= −

θ
δ(1 − δ)

.

Using this expression we get

dΦ`

dδ

∣∣∣∣∣
R
=
∂Φ`

∂δ
−

Φ`

δ(1 − δ)
εΦ`,θ ,

where εΦ`,θ is the elasticity of the liquidity premium with respect to secondary market liquidity,
which is negative (Lemma 1), therefore, the second term is positive.

It is left to show that ∂Φ`/∂δ > 0. For that we compute the derivatives of Us(θ, δ, β) and
ub(θ, δ, β) with respect to δ.

∂Us

∂δ
= 1 + r − (1 + r)

[
(1 − p(θ))(1 + r) + p(θ)Δ

]
and

∂ub

∂δ
=

[
f (θ)Δ−1 + (1 − f (θ))β

]
− 1 .

Then, from equation (19) we have that

∂Φ`

∂δ
= Φ`

[
1

Us

∂Us

∂δ
−

1
ub

∂ub

∂δ

]

,

which is strictly greater than zero if and only if ub(∂Us/∂δ) > Us(∂ub/∂δ)

⇔
∂Us

∂δ

[

δ
∂ub

∂δ
+ 1

]

>

[

δ
∂Us

∂δ
+ 1 + r −

∂Us

∂δ

]
∂ub

∂δ
⇔

∂Us

∂δ
>

[

1 + r −
∂Us

∂δ

]
∂ub

∂δ

⇔ 1 + r − (1 + r)
[
(1 − p)(1 + r) + pΔ

]
> (1 + r)

[
(1 − p)(1 + r) + pΔ

] {[
fΔ−1 + (1 − f )β

]
− 1

}

⇔ 1 >
[
(1 − p)(1 + r) + pΔ

] [
fΔ−1 + (1 − f )β

]
.

It is easy to check that after distributing terms in the previous expression the four remaining terms,
are a weighted average of terms strictly smaller than 1, with the weights given by the product of
probabilities f and p adding up to 1. In fact, β < 1/(1+ r) imply that β(1+ r) < 1, Δ−1(1+ r) < 1,
and Δβ < 1.

Case 2: Effect of β. Want to show that

dΦ`

dβ

∣∣∣∣∣
R

=
∂Φ`

∂β
+
∂Φ`

∂θ
∂θ
∂β

∣∣∣∣∣
R

< 0 .
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From the definition of secondary market liquidity, given in equation (17) we have that

∂θ
∂β

∣∣∣∣∣
R

= −
θ
q1

∂q1

∂β
= −θ(1 − ψ)Δ .

Thus,
dΦ`

dβ

∣∣∣∣∣
R

=
∂Φ`

∂β
− (1 − ψ)Δθ

∂Φ`

∂θ
.

But the sign of the right-hand side term is ambiguous. The reason is that a higher β, on one
hand, reduces the preference for liquidity by impatient households, i.e., ∂Φ`/∂β < 0. But, on the
other hand, it increases the secondary market price, q1, which pushes market thickness θ down and
liquidity premia up. This second force, represented by the second term depends crucially on the
bargaining power of impatient investors: the lower their bargaining power the more important the
effect of their valuation, i.e., β, will be on the price.

To show that the term in the right-hand side is negative, we use that

∂Φ`

∂β
= Φ`

[
1

Us

∂Us

∂β
−

1
ub

∂ub

∂β

]

,

with the derivatives of Us(θ, δ, β) and ub(θ, δ, β) with respect to β given by

∂Us

∂β
= −(1 − δ)(1 + r)p(θ)Δ2(1 − ψ) < 0 ,

and
∂ub

∂β
= δ[ f (θ)(1 − ψ) + 1 − f (θ)] = δ(1 − ψ f (θ)) > 0 ,

where the inequalities follow from our assumption about δ, ψ, and f (θ). Then, ∂Φ`/∂β < 0. So
we need to show that

(1 − ψ)Δθ

[

ub
∂Us

∂θ
−Us

∂ub

∂θ

]

− ub
∂Us

∂β
+ Us

∂ub

∂β
> 0 .

Using the expressions derived above for these derivatives the previous expression equals

ub(1 − ψ)Δα(1 + r)

{

[Δ − (1 + r)]θ
∂p

∂θ

∣∣∣∣∣
b0

+ pΔ

}

+ Usδ(1 − ψ)

{

f − [1 − Δβ]θ
∂ f

∂θ

∣∣∣∣∣
b0

}

+ Usδ(1 − f ) > 0 ,

where the inequality follows from the fact that the terms in curly brackets are positive. In fact,
when θ ∈ (θ, θ), then θ(∂p/∂θ)|b0 = −αp and θ(∂ f/∂θ)|b0 = (1 − α) f so we have

[Δ − (1 + r)]θ
∂p

∂θ

∣∣∣∣∣
b0

+ pΔ = (1 − α)pΔ + αp(1 + r) > 0 ,
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and f − [1 − Δβ]θ
∂ f

∂θ

∣∣∣∣∣
b0

= α f + (1 − α) fΔβ > 0 .

When θ < θ, then (∂p/∂θ)|b0 = 0 and θ(∂ f/∂θ)|b0 = f so we have

[Δ − (1 + r)]θ
∂p

∂θ

∣∣∣∣∣
b0

+ pΔ = pΔ > 0 and f − [1 − Δβ]θ
∂ f

∂θ

∣∣∣∣∣
b0

= fΔβ > 0 .

Finally, when θ > θ, then θ(∂p/∂θ)|b0 = −p and (∂ f/∂θ)|b0 = 0 so we have

[Δ − (1 + r)]θ
∂p

∂θ

∣∣∣∣∣
b0

+ pΔ = (1 + r)p > 0 and f − [1 − Δβ]θ
∂ f

∂θ

∣∣∣∣∣
b0

= f > 0 .

Case 3: Effect of e0. Want to show that dΦ`/de0|R < 0. Note that investors’ endowment e0 affects
liquidity premium Φ` only through its effect on secondary market liquidity θ. In particular, it has
an effect only through s0 = e0 − b0 given that we consider bond issuance as given. Thus,

dΦ`

de0

∣∣∣∣∣
R
=
∂Φ`

∂θ

∂θ
∂s0

ds0

de0
=
∂Φ`

∂θ

θ
s0
< 0 ,

where the inequality follows from Lemma 1 and Proposition 1.

Proof of Proposition 6: From the proof of Theorem 1 we know that the equilibrium is described by
the fixed point of the functionJ , i.e,J(R) = R. Then, considering a generic model parameter % we
can express the equilibrium of the model as J(R, %)−R = 0. By the Implicit Function Theorem, if
the derivative of the previous expression with respect to R is different than 0, then we can define R(%)
and calculate its derivative from the previous expression. Recall that J(R) = Us(θ(R))/ub(θ(R)),
then dJ/dR = (J/θ)εΦ`,θ(dθ/dR) < 0, where εΦ`,θ the elasticity of the liquidity premium with
respect to market thickness. The inequality follows from dθ/dR > 0 (equation (A.7)), Lemma
1, where we showed that the elasticity is negative, and Proposition 1, where we showed that the
elasticity is different than zero.

Then, by the Implicit Function Theorem

dR
d%

= −

[
∂J
∂R
− 1

]−1
∂J
∂%

.

From where we conclude that the sign of dR/d% equals the sign of ∂J/∂%. Note that ∂J/∂% =
dJ/d%|R and thus have the same sign. Moreover, J = Φ`(1 + r)2 so the sign of dJ/d%|R and the
sign of dΦ`/d%|R are equal, with the latter established in Proposition 4. Now we consider the effect
of each of model parameters.
Case 1: Comparative Statics on δ. From Proposition 4 dΦ`/dδ|R > 0, so we conclude that
dR/dδ > 0.
Case 2: Comparative Statics on β. From Proposition 4 dΦ`/dβ|R > 0, so we conclude that
dR/dβ > 0.
Case 3: Comparative Statics on e0. From Proposition 4 dΦ`/de0|R > 0, so we conclude that
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dR/de0 > 0.
Case 4: Comparative Statics on n0. From Proposition 5 db0/dn0 > 0. In this case as the demand
for credit increases, and investors’ portfolio become more illiquid, investors need to receive a
higher compensation to buy those bonds in equilibrium, i.e., as bond issuance increase the expected
hold-to-maturity return increases (Proposition 1). So we conclude that dR/dn0 > 0.

In all cases as the expected hold-to-maturity return increases, the characteristics of the optimal
contract decrease, i.e., leverage l0 and risk ω̄ decrease, and thus, the default premium increases.
Finally, in the first three cases given credit demand remains fixed, as the expected return increases
bond issuance decreases, whereas in the fourth case the total amount of bond issuance depends
on the relative strength of two effect. The increase in bond issuance from the increase in firms’
endowments and the decrease in bond issuance from the decrease in firms’ leverage.

Proof of Proposition 7: We want to show that if the private equilibrium is constrained efficient,
then (α,ψ, r) ∈ ∅, a set of measure zero.

Suppose (lpe
0 , ω̄

pe, θpe, qpe
1 ), the private equilibrium, is constrained efficient. Since

(lpe
0 , ω̄

pe, θpe, qpe
1 ) is a private equilibrium the investor break-even condition (15) holds, i.e., Us = Ub,

and from equation (16) it must be that

1 − Γ(ω̄pe)

lpe
0 Γ
′(ω̄pe)

= −
∂Ub/∂l0

∂Ub/∂ω̄
.

On the other hand, since (lpe
0 , ω̄

pe, θpe, qpe
1 ) is constrained efficient, from equation (23) it must be

that
[1 − Γ(ω̄pe)]

lpe
0 Γ
′(ω̄pe)

= −
n0(Ub −Us) + bpe

0
∂Ub

∂l0
+ ∂U

∂θ
∂θ
∂l0

bpe
0
∂Ub

∂ω̄ + ∂U
∂θ

∂θ
∂ω̄

.

Using that Us = Ub, then
bpe

0
∂Ub

∂l0
+ ∂U

∂θ
∂θ
∂l0

bpe
0
∂Ub

∂ω̄ + ∂U
∂θ

∂θ
∂ω̄

=

∂Ub

∂l0
∂Ub

∂ω̄

,

which is the case iff
∂U
∂θ

[
∂Ub

∂ω̄

∂θ
∂l0
−
∂Ub

∂l0

∂θ
∂ω̄

]

= 0 . (A.11)

Note that,
∂Ub

∂ω̄

∂θ
∂l0
−
∂Ub

∂l0

∂θ
∂ω̄

< 0 , (A.12)

since

∂Ub

∂l0
= −

Ub

l0(l0 − 1)
< 0 and

∂Ub

∂ω̄
=

Ub[Γ′(ω̄) − μG′(ω̄)]

Γ(ω̄) − μG(ω̄)
> 0 , (A.13)

where the last inequality follows from Theorem 1, and ∂θ/∂l0, ∂θ/∂ω̄ < 0 from equation (17).
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Then, A.11 holds iff ∂U/∂θ = 0, which is the case iff

spe
0

∂Us

∂θ
+ bpe

0

∂Ub

∂θ
= 0

spe
0 (1 − δ)(1 + r)[Δ − (1 + r)]p′(θpe) + bpe

0 δ[Δ−1 − β] f ′(θpe)Rb = 0

p(θpe)
α
θpe

spe
0 (1 − δ)(1 + r)[Δ − (1 + r)] = f (θpe)

1 − α
θpe

bpe
0 δ[Δ−1 − β]Rb

αspe
0 (1 − δ)(1 + r)[Δ − (1 + r)] = θpe(1 − α)bpe

0 δ[Δ−1 − β]Rb .

But from equation (17) θpe = (1 − δ)(1 + r)Δspe
0 /(δbpe

0 Rb), then

α[Δ − (1 + r)] = (1 − α)Δ[Δ−1 − β] = (1 − α)[1 − Δβ]

⇔ Δ[α + (1 − α)β] = 1 + αr ⇔
ψ

1 + r
+ (1 − ψ)β =

α + (1 − α)β

1 + αr

⇔ ψ =
α(1 − β(1 + r))

1 + αr
1 + r

(1 − β(1 + r))
⇔ ψ(1 + αr) = α(1 + r) . (A.14)

The set of (α,ψ, r) satisfying (A.14) is, thus, of measure zero.

Proof of Proposition 8:

Part 1. The sign of the externality determines the socially optimal level of secondary market
liquidity.

Let L be the Lagrangian of the planner’s problem, which is given

L = [1 − Γ(ω̄)]Rkl0 − λ[Upe − s0Us − b0Ub] ,

Fully differentiating and evaluating at the private equilibrium allocation (lpe
0 , ω̄

pe, θpe) we have

dL(lpe
0 , ω̄

pe, θpe) = λ
∂U
∂θ

dθ ,

where we have substituted the optimality conditions in the private equilibrium. Thus, the planner,
who internalizes the effect of liquidity on the investor’s utility, would like to increase liquidity in
secondary markets when the externality is positive, i.e., ∂U/∂θ > 0, and decrease liquidity if the
externality is negative, i.e., ∂U/∂θ < 0.

Part 2. Show that the sign of the externality depends on the relationship between the parameters
(α, r, ψ).

Want to show that

ψ(1 + αr) > α(1 + r) ⇔
∂U
∂θ

> 0 .
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In fact,

ψ(1 + αr) > α(1 + r) ⇔ Δ >
α[Δ − (1 + r)]

(1 − α)[Δ−1 − β]

⇔ θ >
αs0(1 − δ)(1 + r)[Δ − (1 + r)]

(1 − α)b0δ[Δ−1 − β]Rb

⇔ b0
∂Ub

∂θ
+ s0

∂Us

∂θ
> 0 ⇔

∂U
∂θ

> 0.

Part 3. Characterization of the efficient contract.
Let ω̄pi(l0) be the function implicitly defined by the Pareto improvement constraint in the

planner’s problem (20). Using the Implicit Function Theorem we have that

dω̄pi

dl0
= −

∂U
∂l0

+ ∂U
∂θ

∂θ
∂l0

∂U
∂ω̄ + ∂U

∂θ
∂θ
∂ω̄

.

Similarly, using the notation introduced in the proof of Theorem 1, let ω̄ier(l0) denotes the
function implicitly defined by the investors’ expected return condition Rb(l0, ω̄) = Us(θ)/ub(θ) for
ω̄ < ˉ̄ω, we have that

dω̄ier

dl0
= −

∂Rb

∂l0

∂Rb

∂ω̄

= −

∂Ub

∂l0
∂Ub

∂ω̄

. (A.15)

Note that the private equilibrium is a feasible point of the pareto improvement constraint, so
ω̄pi(lpe

0 ) = ω̄ier(lpe
0 ). Moreover, note that

dω̄pi(lpe
0 )

dl0
−

dω̄ier(lpe
0 )

dl0
=

∂U
∂θ

[
∂θ
∂ω̄

∂Ub

∂l0
− ∂θ

∂l0

∂Ub

∂ω̄

]

∂Ub

∂ω̄

[
bpe

0
∂Ub

∂ω̄ + ∂U
∂θ

∂θ
∂ω̄

] ,

where all the derivatives on the RHS are evaluated at (lpe
0 , ω̄

pe, θpe), and we used that

∂U(lpe
0 , ω̄

pe, θpe)

∂l0
= n0(Ub(l

pe
0 , ω̄

pe, θpe) −Us(θ
pe)) + bpe

0

∂Ub(l
pe
0 , ω̄

pe, θpe)

∂l0
= bpe

0

∂Ub(l
pe
0 , ω̄

pe, θpe)

∂l0
.

Note that

bpe
0

∂Ub

∂ω̄
+
∂U
∂θ

∂θ
∂ω̄

= bpe
0

ubRb[Γ′ − μG′]

Γ − μG
+

[

spe
0

dUs

dθ
+ bpe

0

dub

dθ
Rb

]
∂θ
∂ω̄

.

And using that spe
0 = e0 − bpe

0 , Rb(lpe
0 , ω̄

pe) = Us(θpe)/ub(θpe) and

∂θ
∂ω̄

= −
θ[Γ′ − μG′]

Γ − μG
,
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we obtain that

bpe
0

∂Ub

∂ω̄
+
∂U
∂θ

∂θ
∂ω̄

=
bpe

0 [Γ′ − μG′]Rb

Us[Γ − μG]

{

Usub + θ
pe dUs

dθ
ub − θ

peUs
dub

dθ

}

+ e0
dUs

dθ
∂θ
∂ω̄

> 0 , (A.16)

where the inequality follows from (A.10) and ∂Us/∂θ, ∂θ/∂ω̄ < 0. It follows from the previous
inequality and equations (A.12) and (A.13) that

dω̄pi(lpe
0 )

dl0
−

dω̄ier(lpe
0 )

dl0
> 0 ⇔

∂U
∂θ

> 0 .

Then, if ψ(1 + αr) > α(1 + r), from Part 2, ∂U/∂θ > 0, and, thus,

dω̄pi(lpe
0 )

dl0
>

dω̄ier(lpe
0 )

dl0
> 0 ,

where the last inequality follows from equation (A.15). That means there are points, along the
weak Pareto improving constraint, that are feasible for the planner where (l0, ω̄) << (lpe

0 , ω̄
pe) and

the firm achieves higher profits, so the planner will choose an allocation with lower leverage and
risk. (Note that this imply that the planer will set a higher secondary market liquidity: θ > θpe.
In fact, lower leverage and risk require a lower equilibrium interest rate in the credit market which
yields a higher level of market liquidity).

Similarly, if ψ(1 + αr) < α(1 + r), from Part 2, ∂U/∂θ < 0, so

0 <
dω̄pi(lpe

0 )

dl0
<

dω̄ier(lpe
0 )

dl0
.

That means there are points that are feasible for the planner where (l0, ω̄) >> (lpe
0 , ω̄

pe) and firms
enjoy higher profits, so the planner will choose an allocation with higher leverage and risk, and
lower market liquidity θ < θpe.

Proof of Proposition 9:

Part 1. Deriving the tax instruments.
The firm’s problem with taxes on storage and leverage can be written as

max
l0,ω̄

[1 − Γ(ω̄)]Rkl0 − τ
lλpel0 + Tl

subject to
Ub = (1 − τs)Us . (A.17)

We write the Lagrangian for this problem as

L = [1 − Γ(ω̄)]Rkl0 − τ
lλpel0 + Tl − λpe[(1 − τs)Us −Ub] .
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Then, the optimality conditions are

[1 − Γ(ω̄)]Rk = τlλpe − λpe∂Ub

∂l0
,

and Γ′(ω̄)Rkl0 = λ
pe∂Ub

∂ω̄
(A.18)

Note that the FOC for (ω̄), equation (A.18), together with equation (A.13) ensures that λpe > 0,
which is not necessarily the case with equality constraints. And the optimal contract is described
by

1 − Γ(ω̄)
l0Γ′(ω̄)

= −

∂Ub

∂l0
− τl

∂Ub

∂ω̄

. (A.19)

Equating the previous expression and equation (23), and using that Ub − Us = −τsUs, we derive
the tax on leverage:

τl =
n0Us

∂Ub

∂ω̄ τ
s +

[
∂Ub

∂l0
∂θ
∂ω̄ −

∂Ub

∂ω̄
∂θ
∂l0

]
∂U
∂θ

b0
∂Ub

∂ω̄ + ∂θ
∂ω̄

∂U
∂θ

.

The term in square brackets is positive from equation (A.12). In addition, the denominator is
positive from equation (A.16).

On the other hand, the break-even condition of investors with a tax on storage was given by
equation (A.17). Combining it with constraint (20) we derive the tax on storage:

τs =
e0

b0

(

1 −
Us(θpe)
Us(θ)

)

.

Part 2. Signing the tax on storage.
If ψ(1+αr) > α(1+ r) then from Proposition 8 the planner wants to increase secondary market

liquidity so θ > θpe. Thus, the storage technology is subsidized: τs ≤ 0. In fact, the tax on storage
is strictly negative from equation (24) if ψ < 1 and is zero if ψ = 0.

On the contrary, if ψ(1 + αr) < α(1 + r), then the externality is negative, the planner wants to
reduce secondary market liquidity, and, therefore, τs > 0.

Part 3. Signing the tax on leverage.
We start by describing the feasible allocations for a firm that chooses the optimal contract and

faces the optimal tax on storage, and the efficient level of secondary market liquidity. That is, τs is
given by equation (24) and θ is the one that the planner would choose optimally. In this case we
have

(1 − τs)Us(θ) =

(

1 −
e0

b0

Us(θ) −Us(θpe)
Us(θ)

)

Us(θ) =
b0Ub(l

pe
0 , ω̄

pe, θpe) + s0Us(θpe) − s0Us(θ)

b0

where we used that in the private equilibrium Us(θpe) = Ub(l
pe
0 , ω̄

pe, θpe), and bpe
0 + spe

0 = e0.
Lets consider first the case when ψ(1 + αr) > α(1 + r). In this case ∂U/∂θ > 0 and θ > θpe,
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then
b0Ub(l

pe
0 , ω̄

pe, θpe) + s0Us(θ
pe) < b0Ub(l

pe
0 , ω̄

pe, θ) + s0Us(θ) .

So we conclude that
(1 − τs)Us(θ) < Ub(l

pe
0 , ω̄

pe, θ) .

Since ∂Ub/∂ω̄ > 0, given the leverage lpe
0 a feasible level of risk will be lower than the risk in

the private equilibrium ω̄pe. So the investor’s break-even condition with the optimal tax and the
efficient level of liquidity will lie below the investor’s break-even condition in the private problem.
Moreover, from the mapping ω̄ier(l0) the slope of the investor’s break-even condition at lpe

0 , which
has the same expression regardless of the tax, will be flatter.

The firm, then, if it were to face this constraint without a tax on leverage will choose a higher
leverage, at odds with the planner optimal prescriptions. The planner then will distort the firm’s
decision to disincentivize the use of leverage by levying a tax on leverage. One way to see this is
that the planner will introduce a distortion such that the distorted isoprofit lines are flatter in the
(l0, ω̄)-space.

Let Πτ = [1− Γ(ω̄)]Rkl0 − τlλpel0 + Tl, and denote by ω̄Πτ
(l0) the function that for any l0 gives

the associated risk level ω̄ along the taxed firm isoprofit line. Then, the Implicit Function Theorem
implies that

dω̄Πτ

dl0
=

[1 − Γ(ω̄)]Rk − τlλpe

Γ′(ω̄)Rkl0
,

so a flatter slope requires a positive τl.
Using the same reasoning we conclude that if ψ(1 + αr) < α(1 + r), then τl < 0.

Proof of Proposition 10: In the presence of quantitative easing, firms’ borrowing is given by
b0, whereas investors’ final bond holdings are given by b0 − b̄0. Then from the budget constraint
of entrepreneurs we have that k0 = n0 + b0, so investors’ lending can be written in terms of
entrepreneurs leverage and QE as n0(l0 − 1 − b̄0/n0). On the other hand, from the investors’
budget constraint, b0 − b̄0 + s0 + s̄0 = e0, so we can express the amount invested in the storage
technology in terms of entrepreneurs leverage as s0 = n0(e0/n0 − (l0 − 1)). Note that the size of
the QE program does not affect the amount ultimately invested in storage, as the bonds the central
bank purchases are offset with the reserves it takes from investors. Finally, from the central bank’s
budget constraint we have that s̄0 = b̄0.

Using the previous expressions we can express secondary market liquidity in terms of en-
trepreneurs leverage and QE, conditional on the interest on reserves relative to the return on the
OTC market. Note that the number of sell orders is always equal to A = δ(b0 − b̄0), as impatient
investors will put all their bond holdings for sale in the OTC market.

If Δ > 1 + r̄ patient investors pledge all their liquid assets to place buy orders in the OTC
market so the number of buy orders B = (1 − δ)[(1 + r)s0 + (1 + r̄)s̄0]/q1 and market liquidity is
given by

θ =
(1 − δ)[(1 + r)s0 + (1 + r̄)s̄0]

δ(b0 − b̄0)q1
=

(1 − δ)Δ
[
(1 + r) (e0 − n0(l0 − 1)) + (1 + r̄)b̄0

]

δRb
(
n0(l0 − 1) − b̄0

) . (A.20)
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Then,

∂θ

∂b̄0
=

(1 − δ)Δ(1 + r̄)

δRb
(
n0(l0 − 1) − b̄0

) +
(1 − δ)Δ

[
(1 + r) (e0 − n0(l0 − 1)) + (1 + r̄)b̄0

]

δRb
(
n0(l0 − 1) − b̄0

)2
> 0 . (A.21)

On the other hand, when 1 + r̄ > Δ patient investors place buy orders in the OTC market only
using the liquid assets they hold after funding the reserves liquidated by impatient investors, so the
number of buy orders B = (1−δ)[(1+ r)s0−δ/(1−δ)(1+ r̄)s̄0]/q1 and market liquidity is given by

θ =
(1 − δ)[(1 + r)s0 − δ

1−δ (1 + r̄)s̄0]

δ(b0 − b̄0)q1
=

(1 − δ)Δ
[
(1 + r) (e0 − n0(l0 − 1)) − δ

1−δ (1 + r̄)b̄0

]

δRb
(
n0(l0 − 1) − b̄0

) .

Then,

∂θ

∂b̄0
= −

Δ(1 + r̄)

Rb
(
n0(l0 − 1) − b̄0

) +
(1 − δ)Δ

[
(1 + r) (e0 − n0(l0 − 1)) − δ

1−δ (1 + r̄)b̄0

]

δRb
(
n0(l0 − 1) − b̄0

)2

=
(1 − δ)Δ(1 + r)

[
e0 − n0(l0 − 1)

(
1 + δ

1−δ
1+r̄
1+r

)]

δRb
(
n0(l0 − 1) − b̄0

)2
> 0 .

where the inequality follows from Assumption 4. Then, ∂θ/∂b̄0 > 0.

Proof of Proposition 11: We want to show that a planner that has access to QE as an additional
policy tool will only use it when ψ(1+αr) > α(1+ r). Let (lsp

0 , ω̄
sp, θsp) be the allocations chosen by

the social planner studied in section 4 and denote by λsp the lagrange multiplier on the constraint
faced by this planner (20).

Let L be the Lagrangian of the central bank, which can be written as

L = [1 − Γ(ω̄)] Rkl0 − λ
[
Upe −U(l0, ω̄, θ(l0, ω̄, b̄0, r̄), b̄0, r̄)

]
− γ

[
(1 + r̄)2 − R̄b

]
− ν[r − r̄] + ηb̄0 ,

where we are considering the constraint imposed by the definition of secondary market liquidity
(17) writing θ(l0, ω̄, b̄0, r̄) and where we have already substituted in s̄0 = b̄0. An optimal allocation
for this planner needs to satisfy the following FOCs:

(l0) 0 =
∂L
∂l0

= [1 − Γ(ω̄)] Rk + λ

[
∂U
∂l0

+
∂U
∂θ

∂θ
∂l0

]

+ γ
∂R̄b

∂l0

(ω̄) 0 =
∂L
∂ω̄

= −Γ′(ω̄)Rkl0 + λ

[
∂U
∂ω̄

+
∂U
∂θ

∂θ
∂ω̄

]

+ γ
∂R̄b

∂ω̄

(b̄0) 0 =
∂L

∂b̄0
= λ

[
∂U

∂b̄0
+
∂U
∂θ

∂θ

∂b̄0

]

+ η
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(r̄) 0 =
∂L
∂r̄

= λ

[
∂U
∂r̄

+
∂U
∂θ

∂θ
∂r̄

]

− 2γ(1 + r̄) + ν

The next step is to evaluate the FOCs at the constrained efficient allocation (without QE),
i.e.,

(
lsp
0 , ω̄

sp, θsp, 0, r
)
. If R̄b(lsp

0 , ω̄
sp) ≤ (1 + r)2 the central bank cannot implement QE without

violating its funding constraint (27). So we consider that we are in the interesting case where
R̄b(lsp

0 , ω̄
sp) > (1 + r)2 and the central bank has some scope to offer a higher return on reserves

relative to the storage technology. In this case the multiplier of this constraint at
(
lsp
0 , ω̄

sp, θsp, 0, r
)

equals zero, i.e., γ = 0. Moreover, note that at b̄0 = 0, investors’ expected utility U has the same
functional form as in the case of the planner studied in section 4. Similarly, at b̄0 = 0 secondary
market liquidity θ, equation (A.20), is the same function of choice variables as in the case without
QE, equation (17). So we conclude that the FOCs wrt leverage l0 and risk ω̄ are satisfied at(
lsp
0 , ω̄

sp, θsp, 0, r
)
. (In fact, we can use either FOC to obtain that λ = λsp, from where the other

FOC follows.)
Next, note that

∂U
∂r̄

= s̄0
∂Us̄

∂r̄
= b̄0

∂Us̄

∂r̄
⇒

∂U
(
lsp
0 , ω̄

sp, θsp, 0, r
)

∂r̄
= 0 .

And given that (1 + r̄) = (1 + r) < Δ from equation (A.20) we have that

∂θ
∂r̄

=
(1 − δ)Δb̄0

δRb
(
n0(l0 − 1) − b̄0

) ⇒
∂θ

(
lsp
0 , ω̄

sp, θsp, 0, r
)

∂r̄
= 0 .

So the FOC wrt interest on reserves r̄ is trivially satisfied, with ν = 0.
Finally, we need to evaluate the FOC wrt b̄0 at

(
lsp
0 , ω̄

sp, θsp, 0, r
)
. From this condition it follows

that
∂U

∂b̄0
+
∂U
∂θ

∂θ

∂b̄0
< 0 ⇒ η > 0 and b̄0 = 0 .

To sign ∂U/∂b̄0 + (∂U/∂θ) (∂θ/∂b̄0) we proceed to compute these derivatives and evaluate at(
lsp
0 , ω̄

sp, θsp, 0, r
)
. By definition

U(l0, ω̄, θ, b̄0, r̄) = [e0 − n0(l0 − 1)]Us + b̄0Us̄ + [n0(l0 − 1) − b̄0]Ub .

Then,

∂U
(
lsp
0 , ω̄

sp, θsp, 0, r
)

∂b̄0
= Us̄ (θsp, r) −Ub

(
lsp
0 , ω̄

sp, θsp
)
= Us (θsp) −Ub

(
lsp
0 , ω̄

sp, θsp
)
,

where we used that if interest on reserves are equal to the return on the storage technology then
Us̄ (θsp, r) = Us (θsp), from equation (31). In addition, from the conditions that describe the
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planner’s allocations we have that

ssp
0 Us(θ

sp) + bsp
0 Ub

(
lsp
0 , ω̄

sp, θsp
)
= spe

0 Us(θ
pe) + bpe

0 Ub

(
lpe
0 , ω̄

pe, θpe
)
= e0Us(θ

pe)

⇒ Ub

(
lsp
0 , ω̄

sp, θsp
)
−Us (θsp) =

e0 [Us (θpe) −Us (θsp)]

bsp
0

. (A.22)

Then, from the characterization of the constrained efficient allocation (Proposition 8) we have that
if ψ(1 + αr) < α(1 + r), then θsp < θpe and ∂U/∂θ < 0. So we conclude that ∂U/∂b̄0 < 0. In
addition, from Proposition 10 we have that ∂θ/∂b̄0 > 0, thus ∂U/∂b̄0 + (∂U/∂θ) (∂θ/∂b̄0) < 0.
Thus, it must be that η > 0 and the optimal QE designs calls for not buying bonds, i.e., b̄0 = 0.

Alternatively, when ψ(1 + αr) < α(1 + r) from Proposition 8 we have that θsp > θpe and
∂U/∂θ > 0, thus ∂U/∂b̄0 > 0 and we conclude that ∂U/∂b̄0 + (∂U/∂θ) (∂θ/∂b̄0) > 0. Therefore,
∂L/∂b̄0 > 0, i.e., the central bank will want to increase the size of the bond buying program when
it is zero and we conclude that b̄0 > 0, improving upon the constrained efficient allocation.

We are left to establish that at the allocation implemented by the central bank, where b̄0 > 0,
r̄ > r. For that we consider evaluate the FOC wrt r̄ when r̄ = r. Note that in this case where
1 + r̄ < Δ we have that

∂U
∂r̄

= s̄0
∂Us̄

∂r̄
= b̄0

{
δ + (1 − δ)

[
pΔ + (1 − p)(1 + r) +

r̄ − r
1 − δ

]
+ 1 + r

}
> 0 .

In addition,
∂θ
∂r̄

=
(1 − δ)Δb̄0

δ[n0(l0 − 1) − b̄0]Rb
> 0 .

So we conclude that

∂L(l0, ω̄, θ, b̄0, r)
∂r̄

= λ

[
∂U
∂r̄

+
∂U
∂θ

∂θ
∂r̄

]

+ ν > 0 .

Recall that we assumed that R̄b(lsp
0 , ω̄

sp) > (1 + r)2. So we conclude that the central bank will set
the interest on reserves strictly higher that the interest on storage, i.e., r̄ > r.

20


